当前位置: 首页 > news >正文

HashMap扩容和Redis中Dict 扩容

扩容时机:

Hash Map:要在某个临界点进行扩容处理,该临界点就是HashMap中元素的数量在数值上等于threshold(table数组长度*加载因子)

Dict:

 当每次新增键值对的时 , 会检测 负载因子(LoadFactor) , 判断以下两种条件会触发扩容 :

  • LoadFactor >= 1 , 并且 Redis 没有进行持久化
  • LoadFactor > 5

HashMap扩容的优化:

1.先插入再扩容 

调用put不一定是新增数据,还可能是覆盖掉原来的数据,这里就存在一个key的比较问题。以先扩容为例,先比较是否是新增的数据,再判断增加数据后是否要扩容,这样比较会浪费时间,而先插入后扩容,就有可能在中途直接通过return返回了(本次put是覆盖操作,size不变不需要扩容),这样可以提高效率的。

2.链表转红黑树

3.插入改成尾插,避免扩容后死链问题

4.扩容的两点核心优化

1.(e.hash & oldCap)== 0时就放入lo链表( low 插入到 新数组中 当前数组下标的位置),否则就是hi链表( low 插入到 新数组中 当前数组下标的位置);

2。j + oldCap就是键值对在新的table数组中的位置

扩充HashMap的时候,不需要像JDK1.7的实现那样重新hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,这个设计确实非常的巧妙,既省去了重新hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了,这一块就是JDK1.8新增的优化点。
 

Dict

1.扩容:

Dict中的 table 是数组与单向链表 的结构 , 当集合的元素较多时 , 必然会导致哈希冲突 , 和链表过长问题 , 甚至会影响效率 因此 Dict内置了 自动扩容机制 , 当每次新增键值对的时 , 会检测 负载因子(LoadFactor) , 判断以下两种条件会触发扩容 :

2.收缩:

Dict还有收缩机制 , 正是和扩容机制相反 . 每当删除元素的时候 , 会检测 负载因子(LoadFactor)

触发条件 : LoadFactor < 0.1

3.rehash:(渐进式迁移)

rehash是dict的一种重建哈希表的机制(扩容/收缩 新Hash) . 当dict 的 size发生变化 , 都会检测 扩容/收缩 条件 , 为此要 将 原Hash 中的所有键值对重新插入到 新Hash 中 , 这个过程叫做 rehash

  1. 计算 新Hash 的大小 , 取决于当前 扩容/收缩
    • 扩容 : 新size >= 原Hash元素总数+1 的 2^n
    • 收缩 : 新size >= 原Hash元素总数 的 2^n (不得小于4)
  2. 新Hash 申请内存空间 , 创建dictht , 并赋值给dict.ht[1]
  3. 设置 dict.rehashidx = 0 , 标示 开始rehash (可以理解成数组的索引)
  4. 每次新增,查询,修改,删除,检查 dict.rehashidx > -1 , 如果是则将 dict.ht[0].table[rehashidx]的 键值对 插入 dict.ht[1] , 并且 rehash++ , 直到 dict.ht[0] 所有数据都插入完 (插入时 会重新分配 hash值)
  5. 插入完后 , 给dict.ht[1]初始化为空哈希表 , 释放原来的dict.ht[0]的内存
  6. 将 dict.rehashidx = -1 , 标示 结束rehash 

相关文章:

HashMap扩容和Redis中Dict 扩容

扩容时机&#xff1a; Hash Map&#xff1a;要在某个临界点进行扩容处理&#xff0c;该临界点就是HashMap中元素的数量在数值上等于threshold&#xff08;table数组长度*加载因子&#xff09; Dict&#xff1a; 当每次新增键值对的时 , 会检测 负载因子(LoadFactor) , 判断以…...

【Redis】内存数据库Redis进阶(Redis持久化)

目录 分布式缓存 Redis 四大问题Redis 持久化RDB (Redis DataBase)RDB执行时机RDB启动方式——save指令save指令相关配置save指令工作原理save配置自动执行 RDB启动方式——bgsave指令bgsave指令相关配置bgsave指令工作原理 RDB三种启动方式对比RDB特殊启动形式RDB优点与缺点 A…...

在PHP8中检测数据类型-PHP8知识详解

在PHP 8中&#xff0c;可以使用多种方法来检测数据类型。以下是常用的四种方法&#xff1a;使用 gettype() 函数、使用 is_* 系列函数、使用 get_debug_type() 函数、使用 get_class() 函数。 一、使用 gettype() 函数 gettype() 函数返回给定变量的数据类型。例如&#xff1a…...

​​​amoeba实现MySQL读写分离

​​​amoeba实现MySQL读写分离 准备环境&#xff1a;主机A和主机B作主从配置&#xff0c;IP地址为192.168.131.129和192.168.131.130&#xff0c;主机C作为中间件&#xff0c;也就是作为代理服务器&#xff0c;IP地址为192.168.131.136。三台服务器操作系统为RHEL6.4 x86_64,为…...

angr学习-入门篇

前言&#xff1a; 资源链接&#xff1a;GitHub - jakespringer/angr_ctf&#xff08;题库仓库&#xff0c;里面有个讲解angr的PPT&#xff0c;里面有官方的题解很详细&#xff09; GitHub - Hustcw/Angr_Tutorial_For_CTF: angr tutorial for ctf 安装&#xff1a; 关于angr…...

基于java SpringBoot和HTML的博客系统

随着网络技术渗透到社会生活的各个方面&#xff0c;传统的交流方式也面临着变化。互联网是一个非常重要的方向。基于Web技术的网络考试系统可以在全球范围内使用互联网&#xff0c;可以在本地或异地进行通信&#xff0c;大大提高了通信和交换的灵活性。在当今高速发展的互联网时…...

动态sql以及常用的标签

什么是动态sql&#xff1a; 指根据不同的条件生成不同的sql 搭建环境&#xff1a; 建表&#xff1a; create table blog( id varchar(50) not null comment 博客id, title varchar(100) not null comment 博客标题, author varchar(30) not null comment 博客作者, create_ti…...

DID以及社交网络中的ZKP

1. 引言 本文关键术语为&#xff1a; Decentralized Identity (DID&#xff0c;去中心化身份) or self-sovereign identity (SSI&#xff0c;自治身份) &#xff1a;是一个基于开放标准的框架&#xff0c;使用自主、独立的标识符和可验证证书&#xff0c;实现可信的数据交换。…...

基于SWAT-MODFLOW地表水与地下水耦合

耦合模型被应用到很多科学和工程领域来改善模型的性能、效率和结果&#xff0c;SWAT作为一个地表水模型可以较好的模拟主要的水文过程&#xff0c;包括地表径流、降水、蒸发、风速、温度、渗流、侧向径流等&#xff0c;但是对于地下水部分的模拟相对粗糙&#xff0c;考虑到SWAT…...

2023拒绝内卷!两年转行网络安全真实看法!

我目前转行网络安全两年&#xff0c;没啥天分&#xff0c;全靠努力&#xff0c;基本能够得上中级的水平了。看到大家对转行网络安全挺感兴趣&#xff0c;也有挺多争议&#xff0c;想把我的建议和经验告诉大家。 有很多人觉得网络安全已经饱和了&#xff0c;现在选择这个工作&a…...

【SA8295P 源码分析】57 - libDSI_MAX96789_0.so驱动库 之 QDI_Panel_Init 显示屏初始化函数 代码分析

【SA8295P 源码分析】57 - libDSI_MAX96789_0.so驱动库 之 QDI_Panel_Init 显示屏初始化函数 代码分析 一、QDI_Panel_Init() 显示屏初始化函数:Panel_DSI_MAX96789_0_Init()二、QDI_Panel_SetPower() 显示屏初始化:Panel_DSI_MAX96789_0_PowerLCD()三、QDI_Panel_GetInfo() …...

IDEA偶尔编译的时候不识别lombok

偶尔IDEA启动项目的时候会识别不到lombok,识别不到get()跟set()方法 方案 在settings添加下面代码 -Djps.track.ap.dependenciesfalse...

rust学习-构建服务器

单线程server 服务器会依次处理每一个请求&#xff0c;在完成第一个连接的处理之前不会处理第二个连接 // cat main.rs use std::io::prelude::*; use std::net::TcpListener; use std::net::TcpStream;fn main() {let listener TcpListener::bind("127.0.0.1:7878&quo…...

Java并发----进程、线程、并行、并发

一、进程与线程 进程 程序由指令和数据组成&#xff0c;但这些指令要运行&#xff0c;数据要读写&#xff0c;就必须将指令加载至 CPU&#xff0c;数据加载至内存。在指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的 当一个程序被运行…...

【计算机网络】第 4 课 - 物理层

欢迎来到博主 Apeiron 的博客&#xff0c;祝您旅程愉快 &#xff01; 时止则止&#xff0c;时行则行。动静不失其时&#xff0c;其道光明。 目录 1、物理层的基本概念 2、物理层协议的主要任务 3、物理层任务 4、总结 1、物理层的基本概念 在计算机网络中&#xff0c;用来…...

深入理解MVVM架构模式

MVVM原理 MVVM是一种用于构建用户界面的软件架构模式&#xff0c;它的名称代表着三个组成部分&#xff1a;Model&#xff08;模型&#xff09;、View&#xff08;视图&#xff09;和ViewModel&#xff08;视图模型&#xff09;。MVVM的主要目标是将应用程序的UI与其底层数据模…...

配置IPv6 over IPv4手动隧道示例

组网需求 如图1所示&#xff0c;两台IPv6主机分别通过SwitchA和SwitchC与IPv4骨干网络连接&#xff0c;客户希望两台IPv6主机能通过IPv4骨干网互通。 图1 配置IPv6 over IPv4手动隧道组网图 配置思路 配置IPv6 over IPv4手动隧道的思路如下&#xff1a; 配置IPv4网络。配置接…...

Vue3--->组合式API与Pinia

目录 使用create-vue搭建 1、使用create-vue创建项目 2、项目目录和关键文件 组合式API 1、组合式API - setup选项 2、组合式API - reactive和ref函数 3、组合式API - computed 4、组合式API - watch 1、基础使用 - 侦听单个数据 2、基础使用 - 侦听多个数据 3、immediate&…...

三言两语说透柯里化和反柯里化

JavaScript中的柯里化(Currying)和反柯里化(Uncurrying)是两种很有用的技术&#xff0c;可以帮助我们写出更加优雅、泛用的函数。本文将首先介绍柯里化的概念、实现原理和应用场景&#xff0c;然后介绍反柯里化的概念、实现原理和应用场景&#xff0c;通过大量的代码示例帮助读…...

细讲TCP三次握手四次挥手(四)

常见面试题 为什么TCP连接的时候是3次&#xff1f;2次不可以吗&#xff1f; 因为需要考虑连接时丢包的问题&#xff0c;如果只握手2次&#xff0c;第二次握手时如果服务端发给客户端的确认报文段丢失&#xff0c;此时服务端已经准备好了收发数(可以理解服务端已经连接成功)据…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...