基于Fringe-Projection环形投影技术的人脸三维形状提取算法matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
5.算法完整程序工程
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.部分核心程序
....................................................................
figure;
imshow(Images);
title('原图');
%显示原始图像
% 变量 bw 设置为 12,作为 face2 图像的标志
bw = 10;
%傅里叶域处理
Images_fft = fftshift(fft2(Images));% 对图像进行傅里叶变换,并将零频率移到图像中心
figure;
subplot(131);
imagesc(log(abs(Images_fft)));
title('傅里叶域图像');% 显示傅里叶域图像bandf = zeros(size(Images_fft)); % 创建与傅里叶域图像大小相同的全零矩阵 bandf
% 找到傅里叶域图像中的最大值对应的坐标
[cent_x,cent_y] = find(abs(Images_fft)==max(max(abs(Images_fft))));
% 设置中心点附近的频率分量为零,以去除低频信息
Images_fft(cent_x-20:cent_x+20,cent_y-20:cent_y+20) = 0;
subplot(132);
imagesc(log(abs(Images_fft)));
title('对傅里叶域图像进行带通滤波');% 显示傅里叶域图像% 对傅里叶域图像进行带通滤波,保留高频信息
Images_fft_bp=Images_fft.*bandf;% 对滤波后的傅里叶域图像进行平移,使零频率恢复到图像中心
shift_x = cent_x - side_max_x;
shift_y = cent_y - side_max_y;
Images_fft_bp = circshift(Images_fft_bp,[shift_x shift_y]);subplot(133);
imagesc(log(abs(Images_fft_bp)));
title('滤波并平移后的傅里叶域图像');
.......................................................
0032
4.算法理论概述
人脸三维形状提取是计算机视觉和人工智能领域中的重要研究方向。它通过对人脸进行深度信息的获取和分析,得到人脸在三维空间中的几何形状。其中,基于Fringe-Projection环形投影技术的人脸三维形状提取算法是一种常用的非接触式三维扫描方法。
1、数学原理:
Fringe-Projection环形投影技术:
Fringe-Projection环形投影技术是一种基于结构光原理的三维扫描方法。该方法利用投影仪投射环形光条(条纹)到目标物体表面,通过相机捕获投影物体的图像,然后根据条纹的形变信息来计算物体表面的深度信息。
投影仪和相机的相对位置和参数需要进行标定,以便准确地获取三维形状信息。通过计算相机图像中每个像素对应的相位差,可以推导出每个像素点在三维空间中的坐标,从而获得目标物体的三维形状。
相位差计算:
在Fringe-Projection环形投影技术中,相机捕获的图像包含了环形光条在目标物体表面上的形变信息。这些形变信息可以通过计算像素点的相位差来得到。
设环形光条的波长为λ,投影到物体表面的光条对应的相位为φ(x, y),则像素点(x, y)处的相位差Δφ(x, y)可以通过以下公式计算:
Δφ(x, y) = φ(x, y) mod 2π
其中,mod表示取模运算。通常情况下,相位差的范围在[0, 2π]之间。
相位展开:
由于相位差Δφ(x, y)的范围在[0, 2π]之间,当物体表面的形状发生高度变化时,相位差可能会发生突变,导致相位计算的不连续性。为了解决这个问题,需要对相位进行展开处理。
相位展开的目标是找到一个合适的整数k(x, y),使得展开后的相位Unwrapped_Δφ(x, y)满足以下条件:
Unwrapped_Δφ(x, y) = Δφ(x, y) + 2π * k(x, y)
展开后的相位Unwrapped_Δφ(x, y)是连续的,可以更准确地表示物体表面的高度信息。
2、实现过程:
基于Fringe-Projection环形投影技术的人脸三维形状提取算法主要分为以下步骤:投影和图像捕获、相位计算、相位展开和三维坐标计算。下面将详细介绍每个步骤:
投影和图像捕获:
首先,使用投影仪投射环形光条到目标人脸表面。投影光条会在人脸表面产生形变。然后,通过相机捕获人脸表面的图像,图像中包含了环形光条的形变信息。
相位计算:
根据相机捕获的图像,计算每个像素点的相位差Δφ(x, y)。这个步骤需要对图像进行预处理,例如去噪、边缘检测和相位提取等。
相位展开:
对相位差Δφ(x, y)进行展开处理,找到合适的整数k(x, y),得到展开后的相位Unwrapped_Δφ(x, y)。展开的过程可以采用基于像素点相邻性的算法,例如四连通或八连通算法。
三维坐标计算:
根据展开后的相位Unwrapped_Δφ(x, y)和已知的相机投影参数,计算每个像素点在三维空间中的坐标。这个过程需要进行相机标定和坐标转换,得到最终的人脸三维形状信息。
3、应用领域:
基于Fringe-Projection环形投影技术的人脸三维形状提取算法在计算机视觉和人工智能领域有着广泛的应用。其中一些典型的应用包括:
人脸识别和认证:通过获取人脸的三维形状信息,可以提高人脸识别和认证系统的准确性和安全性。
人脸表情分析:人脸的三维形状信息可以用于表情分析和情感识别,帮助理解人脸表情背后的情感状态。
视觉效果和增强现实:人脸的三维形状信息可以应用于视觉效果和增强现实技术,为用户提供更加真实和沉浸式的体验。
医学和生物识别:在医学领域,人脸的三维形状信息可以用于面部重建和面部手术模拟。在生物识别领域,它可以用于年龄估计和性别识别等应用。
基于Fringe-Projection环形投影技术的人脸三维形状提取算法是一种非接触式的三维扫描方法,通过投影和相机捕获来获取人脸的深度信息。该算法的实现过程包括投影和图像捕获、相位计算、相位展开和三维坐标计算。它在人脸识别、表情分析、视觉效果、医学和生物识别等领域有着广泛的应用前景。然而,在实际应用中,还需要考虑算法的精度、速度和适用场景等因素,以满足不同应用场景的需求。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:

基于Fringe-Projection环形投影技术的人脸三维形状提取算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .................................................................... figure; imshow(Im…...

如何使用Webman框架实现多语言支持和国际化功能?
如何使用Webman框架实现多语言支持和国际化功能? Webman是一款轻量级的PHP框架,提供了丰富的功能和扩展性,使得开发人员能够更加高效地开发Web应用程序。其中,多语言支持和国际化功能是Web应用程序中非常重要的一项功能ÿ…...

接受平庸,特别是程序员
目录 方向一:简述自己的感受 方向二:聊聊你想怎么做 方向三:如何调整自己的心态 虽然清楚知识需要靠时间沉淀,但在看到自己做不出来的题别人会做,自己写不出的代码别人会写时还是会感到焦虑怎么办? 你是…...

HTML兼容性
文章目录 一、兼容性二、兼容问题1. 在IE6下,子级的宽度会撑开父级设置好的宽度2. IE6中,元素浮动,如果宽度需要内容撑开,需要给里面的块元素都添加浮动才可以3. 在IE6、7下,元素要通过浮动排在同一排,就需…...

Java日期和时间处理入门指南
文章目录 1. 日期操作 - java.util.Date1.1 构造方法1.2 常用方法 2. 日期格式化 - java.text.SimpleDateFormat2.1 获取对象2.2 方法 3. 获取时间分量 - java.util.Calendar3.1 时间分量3.2 创建对象3.3 常用的时间分量3.4 获取时间分量3.5 设置时间分量 结语 引言:…...

anndata k折交叉
如何将anndata拆分为k份 import scanpy as sc import anndata as adclass KSplitAnndata:staticmethoddef _base_split(data: object, k: int) -> list:adata data.copy()num adata.n_obs // kadata_list []for i in range(k):if num < adata.n_obs:adata_list.appen…...

深入解析项目管理中的用户流程图
介绍用户流程图 用户流程图的定义 用户流程图(User Flow Diagram)是一种可视化工具,它描绘了用户在应用或网站上完成任务的过程。这些任务可以是购物、注册账户、查找信息等,任何需要用户交互的动作都可以在用户流程图中找到。 用户流程图的重要性 用…...

Vue使用QrcodeVue生成二维码并下载
生成二维码 1、安装qrcode.vue组件 npm install --save qrcode.vue<template><div id"app"><qrcode-vue :valuevalue :sizesize></qrcode-vue><br /></div> </template><script> //导入组件 import QrcodeVue fro…...

“用户登录”测试用例总结
前言:作为测试工程师,你的目标是要保证系统在各种应用场景下的功能是符合设计要求的,所以你需要考虑的测试用例就需要更多、更全面。鉴于面试中经常会问“”如何测试用户登录“”,我们利用等价类划分、边界值分析等设计一些测试用…...

适应于Linux系统的三种安装包格式 .tar.gz、.deb、rpm
deb、rpm、tar.gz三种Linux软件包的区别 rpm包-在红帽LINUX、SUSE、Fedora可以直接进行安装,但在Ubuntu中却无法识别; deb包-是Ubuntu的专利,在Ubuntu中双击deb包就可以进入自动安装进程; tar.gz包-在所有的Linux版本中都能使用…...

Linux lvs负载均衡
LVS 介绍: Linux Virtual Server(LVS)是一个基于Linux内核的开源软件项目,用于构建高性能、高可用性的服务器群集。LVS通过将客户端请求分发到一组后端服务器上的不同节点来实现负载均衡,从而提高系统的可扩展性和可…...

Tomcat 创建https
打开CMD,按下列输入 keytool -genkeypair -alias www.bo.org -keyalg RSA -keystore d:\ambition.keystore -storetype pkcs12 输入密钥库口令:123456 再次输入新口令:123456 您的名字与姓氏是什么? [Unknown]: www.ambition.com 您的组织单位名称是什么? [Unknown…...

超导电性的基本现象和相关理论
超导体 Hg 超导电性的基本现象和相关理论 超导体的基本特性 低温零电阻突变(< 10^{-23 \Omega/m}) 良导体在 10^{-10} \Omega/m临界温度迈斯纳效应 完全排磁通效应(完全抗磁性) 超导体物体内部不存在电场 第一类超导体与第二类…...

在 PHP 中单引号(‘ ‘)和双引号(“ “)用法的区别
在 PHP 中,使用单引号( )和双引号(" ")可以创建字符串。这两种引号的用法有一些区别。 单引号: 单引号用于创建简单的字符串,其中的变量和转义字符将不会被解析。单引号中的任何内容…...

SpringCloudAlibaba:服务网关之Gateway的cors跨域问题
目录 一:解决问题 二:什么是跨域 三:cors跨域是什么? 一:解决问题 遇到错误: 前端请求时报错 解决: 网关中添加配置文件,注意springboot版本,添加配置。 springboo…...

react中的高阶组件理解与使用
一、什么是高阶组件? 其实就是一个函数,参数是一个组件,经过这个函数的处理返回一个功能增加的组件。 二、代码中如何使用 1,高级组件headerHoc 2,在普通组件header中引入高阶组件并导出高阶组件,参数是普…...

“从零开始学习Spring Boot:构建高效的Java应用程序“
标题:从零开始学习Spring Boot:构建高效的Java应用程序 摘要:本篇博客将带你从零开始学习如何使用Spring Boot构建高效的Java应用程序。我们将讨论Spring Boot的基本概念和特性,并提供一个简单的示例代码来帮助你入门。 正文&am…...

容器部署jenkins定时构建于本地时间不一致
1. Dockerfile FROM jenkins/jenkins:2.411-jdk11 USER root #以下生成密钥方式为旧格式,因为新格式暂不能被"Publish over SSH--->Jenkins SSH Key"功能识别 RUN ssh-keygen -q -m PEM -t rsa -b 2048 -N -f /root/.ssh/id_rsa ADD ./apache-maven…...

生成指定网段的IP字典自动化脚本
目录 1.前言 2.生成指定网段的IP字典自动化脚本 1.前言 在可回显的服务端跨站请求伪造(SSRF)漏洞中,我们通常会利用该漏洞进行内网资产探测。最近正好碰到了。写了一个小脚本。 2.生成指定网段的IP字典自动化脚本 脚本可指定协议、IP段、和端口生成字典。 get-Intranet-A…...

Java版工程行业管理系统源码-专业的工程管理软件- 工程项目各模块及其功能点清单 em
 Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个&…...

《向量数据库指南》——大模型时代,为什么向量数据库成为标配?
目录 1. 数据持久化和低成本存储 2. 高性能查询 3. 数据分布 4. 易于使用 5. 稳定可用 6. 可运维可观测 7. 智能化 1. 数据持久化和低成本存储 许多单机和轻量级的向量数据库并没有关注数据的可靠性,Milvus Cloud 基于对象存储和消息队列的存储方案既通过存储计算分离…...

Pytorch个人学习记录总结 10
目录 优化器 优化器 官方文档地址:torch.optimhttps://pytorch.org/docs/stable/optim.html Debug过程中查看的grad所在的位置: model --> Protected Atributes --> _modules --> ‘model’ --> Protected Atributes --> _modules -…...

18款奔驰S320升级后排座椅加热功能,提升后排乘坐舒适性
奔驰座椅加热就简单多了,是在原车座椅海绵表面安装一层加热垫,加热垫里面是加热丝,通过电机热的原理,快速升温,把热量传递给车主。 奔驰的座椅加热系统是通过车门按键来控制,3档调节,温度从低到…...

Vue中的插值表达式
Vue中的插值表达式(Interpolation)用于将数据动态绑定到HTML模板中。它的主要作用是在模板中直接显示变量的值,并实现数据的双向绑定。以下是插值表达式的一些作用: 1.变量展示:插值表达式允许将Vue实例中的数据直接显…...

背包问题(模板)
目录 01背包: 完全背包: 多重背包(范围0-100): 混合背包: 分组背包: 二维费用的背包问题: 背包问题求方案数: 01背包: 从最大容量开始遍历到当前&…...

docker容器创建私有仓库(第三篇)
目录 六、创建私有仓库 七、Docker资源限制 7.1、CPU使用率 7.2、CPU共享比例 7.3、CPU周期限制 7.4、CPU核心限制 7.5、CPU 配额控制参数的混合案例 7.6、内存限制 7.7、Block IO 的限制 7.8、限制bps 和iops 8、Docker数据持久化 8.1、数据持久化介绍 8.2、Volum…...

Eureka 学习笔记4:客户端 DiscoveryClient
版本 awsVersion ‘1.11.277’ DiscoveryClient # cacheRefreshTask // 配置shouldFetchRegistry if (clientConfig.shouldFetchRegistry()) {// 配置client.refresh.intervalint registryFetchIntervalSeconds clientConfig.getRegistryFetchIntervalSeconds();// 配置expB…...

【方法】PDF可以转换成Word文档吗?如何操作?
很多人喜欢在工作中使用PDF,因为PDF格式可以准确地保留文档的原始格式,比如字体、图像、布局和颜色等。 但如果编辑文档的话,PDF还是没有Word文档方便。那可以将PDF转换成Word格式,再来编辑吗?如何操作呢?…...

AlphaControls crack
AlphaControls crack AlphaControls-一组通用和一些独特的组件,支持皮肤(AlphaSkins),并具有一些附加功能。所有皮肤元素都可以有自己的属性,用于高级绘制渐变、逼真的框架、半透明和模糊的阴影。图形功能实时生成所有计算和绘图。添加了用于…...

论文笔记——Influence Maximization in Undirected Networks
Influence Maximization in Undirected Networks ContributionMotivationPreliminariesNotations Main resultsReduction to Balanced Optimal InstancesProving Theorem 3.1 for Balanced Optimal Instances Contribution 好久没发paper笔记了,这篇比较偏理论&…...