人脸检测的5种方式
文章内容:
1)人脸检测的5种方法
1. Haar cascade + opencv
2. HOG + Dlib
3. CNN + Dlib
4. SSD
5. MTCNN
一。人脸检测的5种方法实现
1. Haar cascade + opencv
Haar是专门用来检测边缘特征的。基本流程如下:



第1步,读取图片
img = cv2.imread('./images/faces1.jpg')
第2步,将图片转化为灰度图片,因为Haar检测器识别的是灰度图片
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
第3步,构造Haar检测器
face_detector = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
第4步,检测器开始检测人脸
detections = face_detector.detectMultiScale(img_gray)
第5步,迭代器解析
for(x,y,w,h)in detections:cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),5)
第6步,显示
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

第7步,参数调节
-- scaleFactor
scaleFactor是用来调节检测人脸大小的范围的,举个例子scaleFactor = 1表示人脸检测范围从1开始检测,人脸离相机远,脸小,离相机近脸大,因此scaleFactor的取值能一定程度上影响识别的精度。

但有时候不论怎么调节scaleFactor都会出现下述情况 ,此时需要minNeighbor调节人脸框的候选数量

--minNeighbors
minNeighbors指每个人脸框最小的候选数量,算法为了检测人脸,可能会在一个人物照片的多个地方去检测人脸,最后会识别出多个地方可能都是人脸,这时minNeighbors会对这些识别结果进行排序取出最可能是人脸的地方,试想一下,如果所有的方框都集中在某一个区域,那么是不是代表这个区域内是人脸的可能性更高,当然是这样,这个方框集中在某一个区域的数量就叫做人脸框的候选数量用minNeighbors表示,显然minNeighbors较大比较好,太大了会出现漏检。

--minSize
minSize表示最小人脸尺寸,maxSize表示最大人脸尺寸,这两个参数都是用来控制人脸大小的,如
detections = face_detector.detectMultiScale(img_gray,scaleFactor = 1.2,minNeighbors =7,minSize=(1,1))
2. HOG + Dlib
第1步,读取图片
img = cv2.imread('./images/faces2.jpg')
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
第2步,构造HOG检测器,需要安装Dlib包(conda install -c conda-forge dlib)
import dlib
hog_face_detector = dlib.get_frontal_face_detector()
第3步,检测人脸
detections= hog_face_detector(img,1)#指的是scaleFactor=1
第4步,解析
for face in detections:x = face.left()y = face.top()r = face.right()b = face.bottom()cv2.rectangle(img,(x,y),(r,b),(0,255,0),5)
第5步,显示
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

3. CNN + Dlib
import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi'] = 200
img = cv2.imread('./images/faces2.jpg')
import dlib
cnn_face_detector = dlib.cnn_face_detection_model_v1('./weights/mmod_human_face_detector.dat')
detections = cnn_face_detector(img,1)
for face in detections:x = face.rect.left()y = face.rect.top()r = face.rect.right()b = face.rect.bottom()c = face.confidencecv2.rectangle(img,(x,y),(r,b),(0,255,0),5)
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

4. SSD
import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi']=200
img = cv2.imread('./images/faces2.jpg')
face_detector = cv2.dnn.readNetFromCaffe('./weights/deploy.prototxt.txt','./weights/res10_300x300_ssd_iter_140000.caffemodel')
img_height = img.shape[0]
img_width = img.shape[1]
img_resize = cv2.resize(img,(500,300))
img_blob = cv2.dnn.blobFromImage(img_resize,1.0,(500,300),(104.0, 177.0, 123.0))
face_detector.setInput(img_blob)
detections = face_detector.forward()
num_of_detections = detections.shape[2]
img_copy = img.copy()
for index in range(num_of_detections):detection_confidence = detections[0,0,index,2]if detection_confidence>0.15:locations = detections[0,0,index,3:7] * np.array([img_width,img_height,img_width,img_height])lx,ly,rx,ry = locations.astype('int')cv2.rectangle(img_copy,(lx,ly),(rx,ry),(0,255,0),5)
plt.imshow(cv2.cvtColor(img_copy,cv2.COLOR_BGR2RGB))

5. MTCNN
import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi']=200img = cv2.imread('./images/faces2.jpg')
img_cvt = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
from mtcnn.mtcnn import MTCNN
face_detetor = MTCNN()
detections = face_detetor.detect_faces(img_cvt)
for face in detections:(x, y, w, h) = face['box']cv2.rectangle(img_cvt, (x, y), (x + w, y + h), (0,255,0), 5)
plt.imshow(img_cvt)

import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi']=200
img = cv2.imread('./images/test.jpg')
img_cvt = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
from mtcnn.mtcnn import MTCNN
face_detetor = MTCNN()
detections = face_detetor.detect_faces(img_cvt)
for face in detections:(x, y, w, h) = face['box']cv2.rectangle(img_cvt, (x, y), (x + w, y + h), (0,255,0), 5)
plt.imshow(img_cvt)

5种人脸检测方式对比

视频流人脸检测 :
1.构造haar人脸检测器
2.获取视频流
3.检测每一帧画面
4.画人脸框并显示
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
haar_face_detector = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
while True:ret,frame = cap.read()fram = cv2.flip(frame,1)frame_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)detection = haar_face_detector.detectMultiScale(frame_gray,minNeighbors=5)for(x,y,w,h) in detection:cv2.rectangle(fram,(x,y),(x+w,y+h),(0,255,0),5)cv2.imshow('Demo',fram)if cv2.waitKey(10) & 0xff == ord('q'):break
cap.release()
cv2.destoryAllWindows()
相关文章:
人脸检测的5种方式
文章内容: 1)人脸检测的5种方法 1. Haar cascade opencv 2. HOG Dlib 3. CNN Dlib 4. SSD 5. MTCNN 一。人脸检测的5种方法实现 1. Haar cascade opencv Haar是专门用来检测边缘特征的。基本流程如下: 第1步,读取图片 img …...
华为OD机试 - 乘积最大值(Python)
乘积最大值 题目 给定一个元素类型为小写字符串的数组 请计算两个没有相同字符的元素长度乘积的最大值 如果没有符合条件的两个元素返回0 输入 输入为一个半角逗号分割的小写字符串数组 2 <= 数组长度 <= 100 0 < 字符串长度 <= 50 输出 两个没有相同字符的元…...
【CMU15-445数据库】bustub Project #2:B+ Tree(上)
(最近两个月学校项目有亿点忙,鸽得有点久,先来把 Project 2 补上) 本节实验文档地址:Project #2 - BTree Project 2 要实现的是数据结构课上都会讲的一个经典结构 B 树,但是相信大多数的同学(…...
功率放大器在lamb波方向算法的损伤定位中的应用
实验名称:基于PZT结Lamb波方向算法的损伤定位方法研究方向:损伤定位测试目的:Lamb波是在具有自由边界的固体板或层状结构中传输的一种弹性导波,由于其本身的传播特性,如沿传播路径衰减小,能量损失小&#x…...
时的科技迎1亿融资,这辆“空中的士”能否实现真正飞行?
近期,进行载人eVTOL的研发、生产和销售的时的科技宣布完成1亿元Pre-A轮融资,成立不到两年,这已是时的科技的第三轮融资,此前,时的科技已获得蓝驰创投和德迅投资千万美元种子轮投资。在不少人看来,时的科技所…...
idea 折叠代码块技巧 关于<editor-fold>
最近在使用delombok插件的时候,发现了一个有意思的小技巧 以前用VSstudio写代码的时候。经常使用代码块折叠的方法。但是在写java的时候,没怎么使用过 VSStudio中的写法 即 #region xxx ... your great coding #endregion这样在浏览的时候,…...
python|第五章考试题及练习题
本篇文章是对北京理工大学嵩天老师的《Python语言程序设计》第五章考试题及练习题的学习记录。 一、考试题 1、随机密码生成 问题描述: 描述 补充编程模板中代码,完成如下功能:…...
DIY生日蛋糕笔记
自制6寸生日蛋糕笔记 实验环境: 长帝CRTF32PD搪瓷烤箱32升, 九阳电动打蛋器, 裱花盘一套 蛋糕盒子 称重器 硅胶刀 两个大碗1号和2号。 材料: 参考: https://www.bilibili.com/video/BV1t34y1Z7mL/?spm_id_from333…...
MybatisPlus------常用注解和逻辑删除以及设置统一前缀以及主键生成策略(六)
MybatisPlus------常用注解以及设置统一前缀以及主键生成策略(六) 在使用MybatisPlus的过程中时,实力类的Mapper继承BaseMapper,此时不要添加TableName注解也能够对表数据实现增删改查。 // mybatispuls 提供了接口实现单表的增…...
JQuery工具框架
JQuery工具框架 直接使用js编程比较麻烦,而且还必须考虑浏览器的差异性。 为了简化javascript的开发,一些javascript库诞生了。当今流行的javascript库有:jQuery诞生于2005 年,Dojo、 EXT_JS、DWR、YUI… jQuery是John Resig在…...
同一个整型常量怎样在不同进制间之间转换?
整型常量可以分别用二进制、八进制、十进制和十六进制表示,不同的进制并不影响数据本身的大小,同一个整型常量可以在不同进制之间转换,具体转换方式如下。1.十进制和二进制之间的转换(1)十进制转二进制。十进制转换成二进制就是一个除以2取余…...
UVa 225 Golygons 黄金图形 暴力搜索 剪枝 状态判断
题目链接:Golygons 题目描述: 给定nnn和kkk个障碍物的坐标,你需要走nnn次,第一次走一个单位距离,第二次走二个单位距离,…,第nnn次走nnn个单位距离。走得过程中不能穿过或者到达障碍物所在的点&…...
PowerShell中的对象是神马?
在PowerShell中,无处不在体现出一个概念,这个概念是什么呢?就是对象,对象是面向对象的语言中非常重要的概念,PowerShell的底层是.net,也是面向对象的语言,因此它也继承了面向对象的语言的语法特性。但是很多人在使用PowerShell 语言的时候会觉得有些疑惑,到底什么是Pow…...
Proxy lab
CSAPP Proxy Lab 本实验需要实现一个web代理服务器,实现逐步从迭代到并发,到最终的具有缓存功能的并发代理服务器。 Web 代理是充当 Web 浏览器和终端服务器之间的中间人的程序。浏览器不是直接联系终端服务器获取网页,而是联系代理&#x…...
【机器学习】Sklearn 集成学习-投票分类器(VoteClassifier)
前言 在【机器学习】集成学习基础概念介绍中有提到过,集成学习的结合策略包括: 平均法、投票法和学习法。sklearn.ensemble库中的包含投票分类器(Voting Classifier) 和投票回归器(Voting Regressor),分别对回归任务和分类任务的…...
Day892.MySql读写分离过期读问题 -MySQL实战
MySql读写分离过期读问题 Hi,我是阿昌,今天学习记录的是关于MySql读写分离过期读问题的内容。 一主多从架构的应用场景:读写分离,以及怎么处理主备延迟导致的读写分离问题。 一主多从的结构,其实就是读写分离的基本…...
无线蓝牙耳机哪个品牌音质好?性价比高音质好的蓝牙耳机排行榜
其实蓝牙耳机购买者最担忧的就是音质问题,怕拿到手的蓝牙耳机低频过重又闷又糊,听歌闷耳的问题,但从2021年蓝牙技术开始突飞猛进后,蓝牙耳机的音质、连接甚至是功能都发生了很大的变化,下面我分享几款性价比高音质的蓝…...
店铺微信公众号怎么创建?
有些小伙伴问店铺微信公众号怎么创建,在解答这个问题之前,先简单说说店铺和微信公众号关系: 店铺一般是指小程序店铺,商家通过小程序店铺来卖货;微信公众号则是一个发布信息的平台。但是两者之间可以打通,…...
goLang Mutex用法案例详解
Golang以其并发性Goroutines而闻名。不仅是并发,还有更多。 因此,在这种情况下,我们必须确保多个goroutines不应该同时试图修改资源,从而导致冲突。 为了确保资源一次只能被一个goroutine访问,我们可以使用一个叫做sync.Mutex的东西。 This concept is called mutual ex…...
java常见的异常
异常分类 Throwable 是java异常的顶级类,所有异常都继承于这个类。 Error,Exception是异常类的两个大分类。 Error Error是非程序异常,即程序不能捕获的异常,一般是编译或者系统性的错误,如OutOfMemorry内存溢出异常等。 Exc…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
