改进粒子群算法优化BP神经网络---回归+分类两种案例
今天采用改进的粒子群算法(LPSO)优化算法优化BP神经网络。本文选用的LPSO算法是之前作者写过的一篇文章:基于改进莱维飞行和混沌映射(10种混沌映射随意切换)的粒子群优化算法,附matlab代码
文章一次性讲解两种案例,回归与分类。回归案例中,作者选用了一个经典的股票数据。分类案例中,选用的是公用的UCI数据集。
BP神经网络初始的权值阈值都是随机生成的,因此不一定是最佳的。采用智能算法优化BP神经网络的权值阈值,使得输入与输出有更加完美的映射关系,以此来提升BP神经网络模型的精度。本文采用LPSO算法对BP神经网络的权值阈值进行优化,并应用于实际的回归和分类案例中。
01 股票预测案例
案例虽然介绍的是股票预测,但是LPSO-BP预测模型是通用的,大家根据自己的数据直接替换即可。数据替换十分简单,代码注释中都写的非常清楚了。
股票数据特征有:开盘价,盘中最高价,盘中最低价,收盘价等。预测值为股票价格。股票数据整理代码已写好,想换成自己数据的童鞋不需要理解此代码,替换数据即可。下面直接上标准BP的预测结果和LPSO-BP的预测结果。
标准BP模型预测结果:
可以看到标准BP神经网络的预测效果不是很理想,无法跟踪真实值,偏差较大。
LPSO-BP预测结果:
可以看到LPSO-BP神经网络的预测值可以紧密跟随真实值,效果很好。
将真实值,BP预测值和LPSO-BP预测值放在一起,效果更加明显。
接下来是一个LPSO优化前后的BP神经网络误差对比图。
LPSO-BP的迭代曲线,以预测值和真实值的MSE为目标函数。
LPSO-BP预测模型的评价:可以看到,LPSO-BP方法在股票预测案例中可以很好地进行股票价格预测。
02 分类案例
接下来是LPSO-BP的分类案例,采用的数据是UCI数据集中的Balancescale.mat数据,该数据一共分为三类。接下来看结果。
标准BP模型分类结果:
混淆矩阵结果图:
简单说一下这个图该怎么理解。请大家横着看,每行的数据加起来是100%,每行的数据个数加起来就是测试集中第一类数据的真实个数。以第一行为例,测试集中一共有12个数据是属于第一类的,而12个数据中,有8个预测正确,有1个预测成了第2类,3个预测成了第三类。其他行均这样理解。
下面这个图是另一种结果展现方式,在一些论文中会用这种方式展示结果。
LPSO-BP分类结果:
03 代码展示
%% 初始化
clear
close all
clc
warning off
addpath(genpath(pwd));
% rng(0)
load Balancescale.mat
data = Balancescale;
data=data(randperm(size(data,1)),:); %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
input=data(:,2:end);
output1 =data(:,1);
for i=1:size(data,1)switch output1(i)case 1output(i,1)=1;case 2output(i,2)=1;case 3output(i,3)=1;case 4output(i,4)=1;case 5output(i,5)=1;case 6output(i,6)=1;case 7output(i,7)=1;end
end
%% 划分训练集和测试集
m=fix(size(data,1)*0.7); %训练的样本数目
%训练集
input_train=input(1:m,:)';
output_train=output(1:m,:)';
% 测试集
input_test=input(m+1:end,:)';
output_test=output(m+1:end,:)';%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
inputn_test=mapminmax('apply',input_test,inputps);
dam = fix(size(inputn,2)*0.3);%选30%的训练集作为验证集
idx = randperm(size(inputn,2),dam);
XValidation = inputn(:,idx);
inputn(:,idx) = [];
YValidation = output_train(:,idx);
output_train(:,idx) = [];%% 获取输入层节点、输出层节点个数
inputnum=size(input_train,1);
outputnum=size(output_train,1);
disp('/')
disp('神经网络结构...')
disp(['输入层的节点数为:',num2str(inputnum)])
disp(['输出层的节点数为:',num2str(outputnum)])
disp(' ')
disp('隐含层节点的确定过程...')%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
acc = 0;
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10net0=newff(inputn,output_train,hiddennum);% 网络参数net0.trainParam.epochs=1000; % 训练次数,这里设置为1000次net0.trainParam.lr=0.01; % 学习速率,这里设置为0.01net0.trainParam.goal=0.0001; % 训练目标最小误差,这里设置为0.0001net0.trainParam.show=25; % 显示频率,这里设置为每训练25次显示一次net0.trainParam.mc=0.001; % 动量因子net0.trainParam.min_grad=1e-8; % 最小性能梯度net0.trainParam.max_fail=6; % 最高失败次数net0.trainParam.showWindow = false;net0.trainParam.showCommandLine = false; % 网络训练[net0,tr]=train(net0,inputn,output_train);an0=sim(net0,XValidation); %验证集的仿真结果predict_label=zeros(1,size(an0,2));for i=1:size(an0,2)predict_label(i)=find(an0(:,i)==max(an0(:,i)));endoutputt=zeros(1,size(YValidation,2));for i=1:size(YValidation,2)outputt(i)=find(YValidation(:,i)==max(YValidation(:,i)));endaccuracy=sum(outputt==predict_label)/length(outputt); %计算预测的确率disp(['隐含层节点数为',num2str(hiddennum),'时,验证集的准确率为:',num2str(accuracy)])%更新最佳的隐含层节点if acc<accuracyacc=accuracy;hiddennum_best=hiddennum;end
end
disp(['最佳的隐含层节点数为:',num2str(hiddennum_best),',验证集相应的训练集的准确率为:',num2str(acc)])%% 构建最佳隐含层节点的BP神经网络
disp(' ')
disp('标准的BP神经网络:')
net0=newff(inputn,output_train,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型
%网络参数配置
net0.trainParam.epochs=1000; % 训练次数,这里设置为1000次
net0.trainParam.lr=0.01; % 学习速率,这里设置为0.01
net0.trainParam.goal=0.00001; % 训练目标最小误差,这里设置为0.0001
net0.trainParam.show=25; % 显示频率,这里设置为每训练25次显示一次
net0.trainParam.mc=0.01; % 动量因子
net0.trainParam.min_grad=1e-6; % 最小性能梯度
net0.trainParam.max_fail=6; % 最高失败次数
% net0.trainParam.showWindow = false;
% net0.trainParam.showCommandLine = false; %隐藏仿真界面
%开始训练
net0=train(net0,inputn,output_train);%预测
an0=sim(net0,inputn_test); %用训练好的模型进行仿真
predict_label=zeros(1,size(an0,2));for i=1:size(an0,2)predict_label(i)=find(an0(:,i)==max(an0(:,i)));endoutputt=zeros(1,size(output_test,2));for i=1:size(output_test,2)outputt(i)=find(output_test(:,i)==max(output_test(:,i)));endaccuracy=sum(outputt==predict_label)/length(outputt); %计算预测的确率 disp(['准确率为:',num2str(accuracy)])
%% 标准BP神经网络作图
% 画方框图
figure
confMat = confusionmat(outputt,predict_label); %output_test是真实值标签
zjyanseplotConfMat(confMat.');
xlabel('Predicted label')
ylabel('Real label')
% 作图
figure
scatter(1:length(predict_label),predict_label,'r*')
hold on
scatter(1:length(predict_label),outputt,'g^')
legend('预测类别','真实类别','NorthWest')
title({'BP神经网络的预测效果',['测试集正确率 = ',num2str(accuracy*100),' %']})
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)
%% LPSO优化算法寻最优权值阈值
disp(' ')
disp('LPSO优化BP神经网络:')net=newff(inputn,output_train,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型%网络参数配置
net.trainParam.epochs=1000; % 训练次数,这里设置为1000次
net.trainParam.lr=0.0001; % 学习速率,这里设置为0.01
net.trainParam.goal=0.000001; % 训练目标最小误差,这里设置为0.0001
net.trainParam.show=25; % 显示频率,这里设置为每训练25次显示一次
net.trainParam.mc=0.01; % 动量因子
net.trainParam.min_grad=1e-6; % 最小性能梯度
net.trainParam.max_fail=6; % 最高失败次数
%% 初始化LPSO参数
popsize=20; %初始种群规模
maxgen=100; %最大进化代数
lb = -1; %神经网络权值阈值的上下限
ub = 1;
numm = 2; %混沌系数
dim=inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum; %自变量个数
[Best_score,Best_pos,LPSO_curve]=LPSOforBP(numm,popsize,maxgen,lb,ub,dim,inputnum,hiddennum_best,outputnum,net,inputn,output_train,inputn_test,output_test);
代码中注释非常详细,有对神经网络构建的注释,有对LPSO-BP代码的注释,简单易懂。
代码附带UCI常用的数据集及其解释。大家可以自行尝试别的数据进行分类。附带LPSO在CEC2005函数的测试代码。
一次性获取两种案例代码。完整代码获取方式,后台回复关键词。
关键词 :
LPSOBP
相关文章:

改进粒子群算法优化BP神经网络---回归+分类两种案例
今天采用改进的粒子群算法(LPSO)优化算法优化BP神经网络。本文选用的LPSO算法是之前作者写过的一篇文章:基于改进莱维飞行和混沌映射(10种混沌映射随意切换)的粒子群优化算法,附matlab代码 文章一次性讲解两种案例,回归…...

VSCode和QT联合开发
提示:本文为学习记录,若有错误,请联系作者,谦虚受教。 文章目录 前言一、VSCODE下载二、使用步骤1.下载扩展 二、新建工程1.新建文件夹2.新建工程3.UI界面文件操作4.效果 总结 前言 一、VSCODE下载 下载地址 二、使用步骤 1.下…...
YOLO5-1 使用YOLO5检测 水面漂浮物记录
一 数据集 robflow 漂浮物数据集:buoy Computer Vision Dataset by ai 二 YOLO5管网 yolo5 :https://github.com/ultralytics/yolov5 克隆代码: git clone https://github.com/ultralytics/yolov5 # clone cd yolov5 pip install -r requirements.…...
MongoDB教程-7
正如在MongoDB关系的最后一章中所看到的,为了在MongoDB中实现规范化的数据库结构,我们使用了引用关系的概念,也被称为手动引用,在这个概念中,我们手动将被引用文档的id存储在其他文档中。然而,在一个文档包…...
Redisson提供优秀的并发控制机制
1. JDK集合类 对于JDK的集合类,forEach方法其实并不能完全避免并发修改异常。 forEach本质上还是一个循环遍历,如果在循环体内直接对集合进行修改,仍然会产生ConcurrentModificationException。 例如: List<String> lis…...

Linux: 设置qmake的Qt版本
Qt开发,qmake会对应一个Qt版本,有时候需要切换这个版本,例如把qmake从Qt5.12切换到Qt5.9, 怎么操作呢? 案例如下: 银河麒麟V10系统,下载安装了Qt5.9.8,但是检查qmake发现它使用的是5.12.8&…...
使用LLM插件从命令行访问Llama 2
大家好,最近的一个大新闻是Meta AI推出了新的开源授权的大型语言模型Llama 2,这是一项非常重要的进展。Facebook最初的LLaMA模型于今年2月发布,掀起了开源LLM领域的创新浪潮——从微调变体到从零开始的再创造。 如果在Llama 2版本发布之日&a…...

gateway过滤器没生效,特殊原因
看这边文章的前提,你要会gateway,知道过滤器怎么配置? 直接来看过滤器,局部过滤器 再来看配置 请求路径 http://127.0.0.1:8080/appframework/services/catalog/catalogSpecials.json?pageindex1&pagesize10&pkidd98…...

长相思追剧小游戏
看效果图 Vue长相思 刚学Vue,正好在追剧,看到这个小案例觉得挺好玩的,第一天学,代码太简陋了 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name&qu…...
leetcode做题笔记51
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。 每一种…...

Windows同时安装两个版本的JDK并随时切换,以JDK6和JDK8为例,并解决相关存在的问题(亲测有效)
Windows同时安装两个版本的JDK并随时切换,以JDK6和JDK8为例,并解决相关存在的问题(亲测有效) 1.下载不同版本JDK 这里给出JDK6和JDK的百度网盘地址,具体安装过程,傻瓜式安装即可。 链接:http…...

【ChatGPT辅助学Rust | 基础系列 | Cargo工具】Cargo介绍及使用
文章目录 前言一,Cargo介绍1,Cargo安装2,创建Rust项目2,编译项目:3,运行项目:4,测试项目:5,更新项目的依赖:6,生成项目的文档…...

全面了解CPU Profiler:解读CPU性能分析工具的核心功能与用法
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、使用3.1 通过调用系统API3.2 通过Android Stu…...
rust format!如何转义{},输出{}?
在Rust中,如果你想要在字符串中包含花括号 {} ,你需要使用双花括号 {{}} 来进行转义。这是因为单个花括号 {} 在字符串中表示占位符,用于格式化字符串。 以下是一个示例: fn main() {let text "这是一个示例: {…...

真人AI写真的制作方法-文生图换脸
AI写真最近火起来了,特别是某款现象级相机的出现,只需要上传自己的照片,就能生成漂亮的写真照,这一产品再次带火了AI绘画。今天我就来分享一个使用Stable Diffusion WebUI制作真人AI写真的方法,不用训练,快…...

vscode如何包含第三方库
方法1:使用C Extension 在include 的 rapidjson的头文件时,vscode会提示找不到的问题 悬停,点击黄色提示 Edit "includePath" setting Include Path,输入rapidjson的include路径 /Users/xxx/workspaces/rapidjson-1.1.…...

【Docker】Docker安装Consul
文章目录 1. 什么是Consul2. Docker安装启动Consul 点击跳转:Docker安装MySQL、Redis、RabbitMQ、Elasticsearch、Nacos等常见服务全套(质量有保证,内容详情) 1. 什么是Consul Consul是HashiCorp公司推出的开源软件,提…...

《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(20)-Fiddler精选插件扩展安装让你的Fiddler开挂到你怀疑人生
1.简介 Fiddler本身的功能其实也已经很强大了,但是Fiddler官方还有很多其他扩展插件功能,可以更好地辅助Fiddler去帮助用户去开发、测试和管理项目上的任务。Fiddler已有的功能已经够我们日常工作中使用了,为了更好的扩展Fiddler,…...

计算机top命令
top 快捷键 1 核心参数 1 1 参考资料 [1]. https://blog.csdn.net/weixin_45465395/article/details/115728520 [2].https://www.cnblogs.com/liushui-sky/p/13224762.html...

DevExpress WPF Tree List组件,让数据可视化程度更高!(二)
DevExpress WPF Tree List组件是一个功能齐全、数据感知的TreeView-ListView混合体,可以把数据信息显示为REE、GRID或两者的组合,在数据绑定或非绑定模式下,具有完整的数据编辑支持。 在上文中(点击这里回顾DevExpress WPF Tree …...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...