当前位置: 首页 > news >正文

【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

对于实时采集的加速度数据,可以应用信号处理算法,如数字滤波和积分运算,将其转换为速度和位移数据。下面是一个简要的概述:

1. 数据采集:首先需要进行数据采集,通过传感器获取物体的加速度数据。这可以通过加速度计等传感器来实现,例如使用微电机惯性测量单元(IMU)或加速度传感器。

2. 数字滤波:为了去除噪声和不必要的高频分量,可以应用数字滤波技术,如低通滤波器。常见的滤波器类型包括巴特沃斯滤波器、无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器。滤波后的信号将更加平滑和稳定。

3. 数值积分:将经过滤波的加速度信号积分一次,可以得到速度信号。数值积分是通过近似求解离散点间的微分来实现的。积分操作会导致积分误差的累积,因此需要考虑误差修正和积分漂移校准的方法。

4. 二次积分:将经过滤波和积分的速度信号再次积分,可以得到位移信号。同样,二次积分也会引入积分误差的累积,因此需要对误差进行校正和修正。

5. 校准和校正:为了获得准确的结果,可能需要进行传感器的校准和校正。这包括零偏校准、灵敏度校准和加速度计的温度效应校正等。

需要注意的是,将加速度数据转换为速度和位移的过程是一个近似计算,其中存在积分误差的累积,尤其是在长时间的测量中。因此,在进行精确位移测量时,需要考虑积分误差的校准和修正。

总结来说,将加速度数据转换为速度和位移的过程包括数据采集、数字滤波、数值积分和二次积分。每个步骤都需要选择合适的算法和参数,并进行校准和修正,以获得准确可靠的速度和位移结果。

📚2 运行结果

部分代码:

%% Processed inputs
%--------------------------------------------------------------------------
time   = data(:,1);         % Time vector
accval_g = data(:,2);       % Acceleration in g
accval = data(:,2)*9.81;    % Acceleration in m/s^2
L = size(data,1);           % Length of signal
Fs = 1/(time(2)-time(1));   % Sampling frequency                    
Ts = 1/Fs;                  % Sampling period       

%% Displacement, Velocity and Acceleration
%--------------------------------------------------------------------------
[~, ~, ~, filtered_acc_g] ...
          = accelo2disp(time,Ts, Fs, Fcut,alpha, accval_g, Lvdtmat,...
                            lvdtcons, accbiasV, accsensi, filtertype...
                            ,filtermethod,firorder);
                        
[LVDTfilt, filtered_disp, filtered_vel, filtered_acc] ...
          = accelo2disp(time,Ts, Fs, Fcut,alpha, accval, Lvdtmat,...
                            lvdtcons, accbiasV, accsensi, filtertype...
                            ,filtermethod,firorder);

%% Compute the frequency
%--------------------------------------------------------------------------
% Compute the Fourier transform of the signal.
Y = fft(filtered_acc);

% Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 
% based on P2 and the even-valued signal length L.
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);

% Define the frequency domain f and plot the single-sided amplitude spectrum P1.
% On average, longer signals produce better frequency approximations.
f = Fs*(0:(L/2))/L;

%% Plot Acceleration vs.time
%--------------------------------------------------------------------------
figure;
subplot(5,2,1)
ax1 = plot(time, accval_g, 'LineWidth', 1);
grid on
xlabel('Time ($sec.$)','Interpreter', 'latex');
ylabel('Acceleration ($g$)','Interpreter', 'latex');
title('Acceleration vs.time (with DC bias)')

ax2 = subplot(5,2,2);
plot(time, filtered_acc_g, 'LineWidth', 1)
grid on
xlabel('Time ($sec.$)','Interpreter', 'latex');
ylabel('Acceleration ($g$)','Interpreter', 'latex');
title('Acceleration vs.time (DC bias removed)')

ax3 = subplot(5,2,3:4);
plot(time,filtered_acc, 'LineWidth', 1)
grid on
xlabel('Time ($sec.$)','Interpreter', 'latex');
ylabel('Acceleration ($\frac{m}{s^2}$)','Interpreter', 'latex');
title('Acceleration vs.time (DC bias removed)')

ax4 = subplot(5,2,5:6);
plot(time,filtered_vel, 'LineWidth', 1)
grid on
xlabel('Time ($sec.$)','Interpreter', 'latex');
ylabel('Velocity ($\frac{m}{s}$)','Interpreter', 'latex');
title('Velocity vs.time')

ax5 = subplot(5,2,7:8);
plot(time,filtered_disp, 'LineWidth', 1)
grid on
xlabel('Time ($sec.$)','Interpreter', 'latex');
ylabel('Displacement ($m$)','Interpreter', 'latex');
title('Displacement vs.time')

ax6 = subplot(5,2,9:10);
plot(f,P1, 'LineWidth', 1)
grid on
title('Frequency Spectrum of Acceleration')
xlabel('f(Hz)')
ylabel('|P1(f)|')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

1. 王思远, 张逸凡. (2016). 基于MEMS加速度计测量的速度和位移测量方法. 精仪与检测技术, 4, 29-32.

2. 刘兆岑, 张进杰, 吴树荣等. (2018). 加速度传感器信号滤波技术及其在位移测量中的应用. 自动化仪表, 39(5), 38-42.

3. 马靖蒙, 黄艺帆, 赵晨曦等. (2017). 基于自适应滤波和积分的加速度测速算法. 机械工程学报, 53(3), 68-74.

4. 高素平, 汪思悦, 毛亚伟等. (2016). 基于加速度测量的振动位移自适应无源解调算法. 哈尔滨工程大学学报, 37(5), 683-688.

🌈4 Matlab代码实现

相关文章:

【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

家居行业解决方案 | 君子签电子签约助力家居企业减负增效

过去,家居行业因供需两端碎片化、服务链条较长等因素,导致线上发展较为缓慢,近年来,互联网的发展推动直播电商、兴趣电商兴起,促使家居行业数字化建设需求越来越为迫切。 合同管理作为家居行业企业经营的一项重要管理…...

Nodejs 第五章(Npm run 原理)

npm run xxx 发生了什么 按照下面的例子npm run dev 举例过程中发生了什么 读取package json 的scripts 对应的脚本命令(dev:vite),vite是个可执行脚本,他的查找规则是: 先从当前项目的node_modules/.bin去查找可执行命令vite如果没找到就去全局的node…...

150. 逆波兰表达式求值

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 、-、* 和 / 。 每个操作数(运算对象)都可以是一个整数或者另一个表达式。 两个…...

js中的设计模式

设计模式 代码整体的结构会更加清楚,管理起来会更加方便,更好地维护 设计模式是一种思想 发布订阅 模块化开发 导入很多模块 容器即数组存储未来要执行的方法,同addEventListener 数组塌陷问题* 由于删除了元素,导致从删除元素的位…...

PostgreSQL:string_agg 多列值聚合成一列

PostgreSQL:string_agg 多列值聚合成一列 string_agg是PostgreSQL中的一个聚合函数,用于将一组值连接为一个字符串。它接受两个参数:要连接的值和连接符。 语法如下: string_agg(expression, delimiter)其中,expression是要连接…...

通向架构师的道路之apache_tomcat_https应用

一、总结前一天的学习 通过上一章我们知道、了解并掌握了Web Server结合App Server是怎么样的一种架构,并且亲手通过Apache的Http Server与Tomcat6进行了整合的实验。 这样的架构的好处在于: 减轻App Server端的压力,用Web Server来分压…...

iOS——锁与死锁问题

iOS中的锁 什么是锁锁的分类互斥锁1. synchronized2. NSLock3. pthread 递归锁1. NSRecursiveLock2. pthread 信号量Semaphore1. dispatch_semaphore_t2. pthread 条件锁1. NSCodition2. NSCoditionLock3. POSIX Conditions 分布式锁NSDistributedLock 读写锁1. dispatch_barri…...

恒运资本:股票总市值是什么意思?

职业新手可能会疑惑地问,股票总市值到底是什么意思?究竟,这是普通出资者常常看到的词汇,要了解股票总市值的含义,是需求了解金融商场的基本概念的。 股票总市值简介 股票的总市值是由公司一切的股票的数量乘以现在的价…...

Selenium Chrome Webdriver 如何获取 Youtube 悬停文本

导语 Youtube 是一个非常流行的视频分享平台,有时候我们可能想要爬取一些视频的信息,比如标题、播放量、点赞数等。但是有些信息并不是直接显示在网页上的,而是需要我们将鼠标悬停在某个元素上才能看到,比如视频的时长、上传时间…...

【LeetCode每日一题】——766.托普利茨矩阵

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【题目进阶】八【解题思路】九【时间频度】十【代码实现】十一【提交结果】 一【题目类别】 矩阵 二【题目难度】 简单 三【题目编号】 766.托普利茨矩阵 四【题目描述…...

第三方材料检测实验室LIMS系统源码 lims源码

实验室LIMS系统采用国际规范的业务管理流程和严格的质量控制体系,对每个检测流程节点采用 “人、机、料、法、环、测”进行质量控制,可记录,可追溯。强大的数据查询和统计分析能力,提高工作效率;自动化地采集实验室原始…...

【数据结构与算法——TypeScript】数组、栈、队列、链表

【数据结构与算法——TypeScript】 算法(Algorithm)的认识 解决问题的过程中,不仅仅 数据的存储方式会影响效率,算法的优劣也会影响效率 什么是算法? 定义: 🟢 一个有限指令集,每条指令的描述不依赖于言语…...

[运维|中间件] Apache APISIX使用笔记

简介 Apache APISIX 是一个现代化、高性能、可扩展的开源 API 网关和微服务管理平台。 安装 快速安装 curl -sL https://run.api7.ai/apisix/quickstart | sh...

Android Intent 使用(详细版)

经典好文推荐,通过阅读本文,您将收获以下知识点: 一、通过组件名启动 二、通过包名、类名启动 三、通过类启动 四、打电话 五、发短信 六、打开网页 七、播放音乐 八、打开图片 九、创建闹钟 十、创建定时器 十一、添加日历事件 十二、拍照 十三、打开Camera 十四、打开视频录…...

【Clion 2】多行TODO使用

一、TODO: 说明: 有时需要标记部分代码以供将来参考: 优化和改进的领域、可能的更改、要讨论的问题等等。 支持: TODO和FIXME小写和大写。这些模式可以在任何受支持的文件类型的行注释和块注释内使用。 创建TODO项 在要添加注释的代码行中…...

【运维】hive 终端突然不能使用:Hive Schema version does not match metastore‘s schema version

文章目录 一. 问题描述二. 常规排查1. 元数据库2. hive-site.xml相关meta连接信息检查 三. 正解 一. 问题描述 进入hive终端,执行如下命令报错: hive> show tables; FAILED: SemanticException org.apache.hadoop.hive.ql.metadata.HiveException: …...

P1049 [NOIP2001 普及组] 装箱问题

题目描述 有一个箱子容量为 V,同时有 n 个物品,每个物品有一个体积。 现在从 n 个物品中,任取若干个装入箱内(也可以不取),使箱子的剩余空间最小。输出这个最小值。 输入格式 第一行共一个整数 V&#…...

QCustomPlot获取选点坐标

QCustomPlot版本:Version: 2.1.1 设置点选择模式 customPlot->setInteractions(QCP::iSelectPlottables);2.绑定点击事件 connect(customPlot, &QCustomPlot::plottableClick, this, &CCustomPlot::onPlotClick);3.读取点位置 void CustomPlot::onP…...

Qt配置Android开发

1.使用Qt5.14.2 2.安装java和SDK,NDK 具体参考该博客【原创】基于Qt5.14的一站式安卓开发环境搭建_qt安卓开发环境搭建_Jamie.T的博客-CSDN博客 3.后续可能会遇到的问题: ①SDK配置问题: 若出现以下编译错误,是build-tools 2…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

线程同步:确保多线程程序的安全与高效!

全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...