当前位置: 首页 > news >正文

【LeetCode每日一题】——766.托普利茨矩阵

文章目录

  • 一【题目类别】
  • 二【题目难度】
  • 三【题目编号】
  • 四【题目描述】
  • 五【题目示例】
  • 六【题目提示】
  • 七【题目进阶】
  • 八【解题思路】
  • 九【时间频度】
  • 十【代码实现】
  • 十一【提交结果】

一【题目类别】

  • 矩阵

二【题目难度】

  • 简单

三【题目编号】

  • 766.托普利茨矩阵

四【题目描述】

  • 给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。
  • 如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。

五【题目示例】

  • 示例 1:

    • 在这里插入图片描述
    • 输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
    • 输出:true
    • 解释:
      • 在上述矩阵中, 其对角线为:
      • “[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
      • 各条对角线上的所有元素均相同, 因此答案是 True 。
  • 示例 2:

    • 在这里插入图片描述
    • 输入:matrix = [[1,2],[2,2]]
    • 输出:false
    • 解释:
      • 对角线 “[1, 2]” 上的元素不同。

六【题目提示】

  • m = = m a t r i x . l e n g t h m == matrix.length m==matrix.length
  • n = = m a t r i x [ i ] . l e n g t h n == matrix[i].length n==matrix[i].length
  • 1 < = m , n < = 20 1 <= m, n <= 20 1<=m,n<=20
  • 0 < = m a t r i x [ i ] [ j ] < = 99 0 <= matrix[i][j] <= 99 0<=matrix[i][j]<=99

七【题目进阶】

  • 如果矩阵存储在磁盘上,并且内存有限,以至于一次最多只能将矩阵的一行加载到内存中,该怎么办?
  • 如果矩阵太大,以至于一次只能将不完整的一行加载到内存中,该怎么办?

八【解题思路】

  • 本题的思路比较简单,我们无需逐个对角线去比较,只需要比较前一行除了最后一个元素和后一行除了第一个元素后剩余的元素是否想等
  • 因为如果是托普利茨矩阵的话,下一行一定是上一行向右移动一个位置之后形成的矩阵,所以上一行的最后一个元素和下一行的第一个元素,可以无须判断,因为上一行的最后一个元素被移出了,下一行的第一个元素单独成为对角线
  • 最后返回结果即可

九【时间频度】

  • 时间复杂度: O ( m ∗ n ) O(m * n) O(mn) m 、 n m、n mn分别为传入数组的行数和列数
  • 空间复杂度: O ( 1 ) O(1) O(1)

十【代码实现】

  1. Java语言版
class Solution {public boolean isToeplitzMatrix(int[][] matrix) {int m = matrix.length;int n = matrix[0].length;for(int i = 0;i < m - 1;i++){for(int j = 0;j < n - 1;j++){if(matrix[i][j] != matrix[i+1][j+1]){return false;}}}return true;}
}
  1. C语言版
bool isToeplitzMatrix(int** matrix, int matrixSize, int* matrixColSize)
{int m = matrixSize;int n = matrixColSize[0];for(int i = 0;i < m - 1;i++){for(int j = 0;j < n - 1;j++){if(matrix[i][j] != matrix[i+1][j+1]){return false;}}}return true;
}
  1. Python语言版
class Solution:def isToeplitzMatrix(self, matrix: List[List[int]]) -> bool:m = len(matrix)n = len(matrix[0])for i in range(m - 1):for j in range(n - 1):if matrix[i][j] != matrix[i+1][j+1]:return Falsereturn True
  1. C++语言版
class Solution {
public:bool isToeplitzMatrix(vector<vector<int>>& matrix) {int m = matrix.size();int n = matrix[0].size();for(int i = 0;i < m - 1;i++){for(int j = 0;j < n - 1;j++){if(matrix[i][j] != matrix[i+1][j+1]){return false;}}}return true;}
};

十一【提交结果】

  1. Java语言版
    在这里插入图片描述

  2. C语言版
    在这里插入图片描述

  3. Python语言版
    在这里插入图片描述

  4. C++语言版
    在这里插入图片描述

相关文章:

【LeetCode每日一题】——766.托普利茨矩阵

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【题目进阶】八【解题思路】九【时间频度】十【代码实现】十一【提交结果】 一【题目类别】 矩阵 二【题目难度】 简单 三【题目编号】 766.托普利茨矩阵 四【题目描述…...

第三方材料检测实验室LIMS系统源码 lims源码

实验室LIMS系统采用国际规范的业务管理流程和严格的质量控制体系&#xff0c;对每个检测流程节点采用 “人、机、料、法、环、测”进行质量控制&#xff0c;可记录&#xff0c;可追溯。强大的数据查询和统计分析能力&#xff0c;提高工作效率&#xff1b;自动化地采集实验室原始…...

【数据结构与算法——TypeScript】数组、栈、队列、链表

【数据结构与算法——TypeScript】 算法(Algorithm)的认识 解决问题的过程中&#xff0c;不仅仅 数据的存储方式会影响效率&#xff0c;算法的优劣也会影响效率 什么是算法&#xff1f; 定义&#xff1a; &#x1f7e2; 一个有限指令集&#xff0c;每条指令的描述不依赖于言语…...

[运维|中间件] Apache APISIX使用笔记

简介 Apache APISIX 是一个现代化、高性能、可扩展的开源 API 网关和微服务管理平台。 安装 快速安装 curl -sL https://run.api7.ai/apisix/quickstart | sh...

Android Intent 使用(详细版)

经典好文推荐,通过阅读本文,您将收获以下知识点: 一、通过组件名启动 二、通过包名、类名启动 三、通过类启动 四、打电话 五、发短信 六、打开网页 七、播放音乐 八、打开图片 九、创建闹钟 十、创建定时器 十一、添加日历事件 十二、拍照 十三、打开Camera 十四、打开视频录…...

【Clion 2】多行TODO使用

一、TODO: 说明&#xff1a; 有时需要标记部分代码以供将来参考&#xff1a; 优化和改进的领域、可能的更改、要讨论的问题等等。 支持&#xff1a; TODO和FIXME小写和大写。这些模式可以在任何受支持的文件类型的行注释和块注释内使用。 创建TODO项 在要添加注释的代码行中…...

【运维】hive 终端突然不能使用:Hive Schema version does not match metastore‘s schema version

文章目录 一. 问题描述二. 常规排查1. 元数据库2. hive-site.xml相关meta连接信息检查 三. 正解 一. 问题描述 进入hive终端&#xff0c;执行如下命令报错&#xff1a; hive> show tables; FAILED: SemanticException org.apache.hadoop.hive.ql.metadata.HiveException: …...

P1049 [NOIP2001 普及组] 装箱问题

题目描述 有一个箱子容量为 V&#xff0c;同时有 n 个物品&#xff0c;每个物品有一个体积。 现在从 n 个物品中&#xff0c;任取若干个装入箱内&#xff08;也可以不取&#xff09;&#xff0c;使箱子的剩余空间最小。输出这个最小值。 输入格式 第一行共一个整数 V&#…...

QCustomPlot获取选点坐标

QCustomPlot版本&#xff1a;Version: 2.1.1 设置点选择模式 customPlot->setInteractions(QCP::iSelectPlottables);2.绑定点击事件 connect(customPlot, &QCustomPlot::plottableClick, this, &CCustomPlot::onPlotClick);3.读取点位置 void CustomPlot::onP…...

Qt配置Android开发

1.使用Qt5.14.2 2.安装java和SDK&#xff0c;NDK 具体参考该博客【原创】基于Qt5.14的一站式安卓开发环境搭建_qt安卓开发环境搭建_Jamie.T的博客-CSDN博客 3.后续可能会遇到的问题&#xff1a; ①SDK配置问题&#xff1a; 若出现以下编译错误&#xff0c;是build-tools 2…...

花费7元训练自己的GPT 2模型

在上一篇博客中&#xff0c;我介绍了用Tensorflow来重现GPT 1的模型和训练的过程。这次我打算用Pytorch来重现GPT 2的模型并从头进行训练。 GPT 2的模型相比GPT 1的改进并不多&#xff0c;主要在以下方面&#xff1a; 1. GPT 2把layer normalization放在每个decoder block的前…...

性能分析工具

性能分析工具 valgrind 交叉编译 android arm/arm64 平台 valgrind android32 #!/usr/bin/env bashexport NDKROOT~/opt/android-ndk-r14b/ export AR$NDKROOT/toolchains/arm-linux-androideabi-4.9/prebuilt/linux-x86_64/bin/arm-linux-androideabi-ar export LD$NDKROO…...

1.netty介绍

1.介绍 是JBOSS通过的java开源框架是异步的,基于事件驱动(点击一个按钮调用某个函数)的网络应用框架,高性能高可靠的网络IO程序基于TCP,面向客户端高并发应用/点对点大量数据持续传输的应用是NIO框架 (IO的一层层封装) TCP/IP->javaIO和网络编程–>NIO—>Netty 2.应用…...

【Jmeter】压测mysql数据库中间件mycat

目录 背景 环境准备 1、下载Jmeter 2、下载mysql数据库的驱动包 3、要进行测试的数据库 Jmeter配置 1、启动Jmeter图形界面 2、加载mysql驱动包 3、新建一个线程组&#xff0c;然后如下图所示添加 JDBC Connection Configuration 4、配置JDBC Connection Configurati…...

leetcode原题 路径总和 I II III(递归实现)

路径总和 I &#xff1a; 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。…...

【css】css设置表格样式-边框线合并

<style> table, td, th {border: 1px solid black;//设置边框线 }table {width: 100%; }td {text-align: center;//设置文本居中 } </style> </head> <body><table><tr><th>Firstname</th><th>Lastname</th><t…...

使用Flutter的image_picker插件实现设备的相册的访问和拍照

文章目录 需求描述Flutter插件image_picker的介绍使用步骤1、添加依赖2、导入 例子完整的代码效果 总结 需求描述 在应用开发时&#xff0c;我们有很多场景要使用到更换图片的功能&#xff0c;即将原本的图像替换设置成其他的图像&#xff0c;从设备的相册或相机中选择图片或拍…...

数学建模体系

1评价类 主观求权重&#xff1a;层次分析法客观求权重&#xff1a;TOPSIS综合评价&#xff1a;典型相关分析 2预测插值算法拟合多元回归分析时间序列分析、ARCH和garch模型岭回归和lasso回归 3关系相关系数典型相关分析多元回归分析灰色关联分析 4图最短路径&#xff1a;迪杰斯…...

13.7 CentOS 7 环境下大量创建帐号的方法

13.7.1 一些帐号相关的检查工具 pwck pwck 这个指令在检查 /etc/passwd 这个帐号配置文件内的信息&#xff0c;与实际的主文件夹是否存在等信息&#xff0c; 还可以比对 /etc/passwd /etc/shadow 的信息是否一致&#xff0c;另外&#xff0c;如果 /etc/passwd 内的数据字段错…...

HTML5 Canvas(画布)

<canvas>标签定义图形&#xff0c;比如图表和其他图像&#xff0c;你必须用脚本来绘制图形。 在画布上&#xff08; Canvas &#xff09;画一个共红色矩形&#xff0c;渐变矩形&#xff0c;彩色矩形&#xff0c;和一些彩色文字。 什么是 Canvas&#xff1f; HTML5<c…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...