leetcode原题 路径总和 I II III(递归实现)
路径总和 I :
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
要点:判断是否存在满足条件的路径,只需返回true or false。
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
解题思路:
每遍历一个节点,就从targetsum中减去当前节点的值,当遍历到叶子节点时,如果targetsum=0,说明存在该路径,返回true。反之,返回false
class Solution {
public:bool hasPathSum(TreeNode* root, int targetSum) {if(root==nullptr) return false;targetSum-=root->val;if(root->left==nullptr&&root->right==nullptr){return targetSum==0;}//左子树和右子树有一个满足就可以,所以用||的关系return hasPathSum(root->left,targetSum)||hasPathSum(root->right,targetSum);}
};
路径总和 II:
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
要点:返回所有满足题意的路径,必须是从根节点开始,叶子节点结束。
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
解题思路:
添加一个临时数组,用来存放当前遍历到的节点走过的路径。其他的与第一题相同,找到符合题意的路径,就将临时数组存放到结果数组中,若不符合条件,需回退,注意回退时需要将将一个放到临时数组中的节点删掉。
class Solution {
public:vector<vector<int>> res;//所有路径vector<int> temp;//当前路径void dfs(TreeNode* root, int targetSum){if(root==nullptr) return;temp.push_back(root->val);//当前节点放入到temp中targetSum-=root->val;//从总和中减去//若遇到叶子节点,需判断目标值是否已经为0if(root->left==nullptr&&root->right==nullptr){//目标值=0,说明当前路径符合题意,temp放到res中if(targetSum==0){res.push_back(temp);}}//递归dfs(root->left,targetSum);dfs(root->right,targetSum);//不符合题意,将当前节点从路径中删掉temp.pop_back();}vector<vector<int>> pathSum(TreeNode* root, int targetSum) {dfs(root,targetSum);return res;}
};
路径总和 III:
给定一个二叉树的根节点 root
,和一个整数 targetSum
,求该二叉树里节点值之和等于 targetSum
的 路径 的数目。
路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
要点:返回的是所有符合题意的路径总条数,与第二题不一样的是,可以不是从根节点开始,也不需要在叶子节点结束。
输入:root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
输出:3
解释:和等于 8 的路径有 3 条,如图所示。
解题思路:
相当于是递归套递归,构建一个找路径函数,遍历以当前节点为起始的路径中,是否存在符合题意的路径,然后再在原函数递归到每一个节点,使每一个节点都为起始节点进行找符合题意的路径。
class Solution {
public:int res=0;int pathSum(TreeNode* root, int targetSum) {if(root==nullptr) return res;find_path(root,targetSum);//以当前的root节点为起始节点,找路径pathSum(root->left,targetSum);//递归当前根节点的左子树上的节点pathSum(root->right,targetSum);//递归当前根节点的右子树上的节点return res;}//找路径函数void find_path(TreeNode* root,long targetSum){if(root==nullptr) return;targetSum -= root->val;if(targetSum==0)//只要targetsum=0,说明存在一条路径,那么res++{res+=1;}find_path(root->left,targetSum);find_path(root->right,targetSum);}
};
相关文章:

leetcode原题 路径总和 I II III(递归实现)
路径总和 I : 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。…...

【css】css设置表格样式-边框线合并
<style> table, td, th {border: 1px solid black;//设置边框线 }table {width: 100%; }td {text-align: center;//设置文本居中 } </style> </head> <body><table><tr><th>Firstname</th><th>Lastname</th><t…...

使用Flutter的image_picker插件实现设备的相册的访问和拍照
文章目录 需求描述Flutter插件image_picker的介绍使用步骤1、添加依赖2、导入 例子完整的代码效果 总结 需求描述 在应用开发时,我们有很多场景要使用到更换图片的功能,即将原本的图像替换设置成其他的图像,从设备的相册或相机中选择图片或拍…...
数学建模体系
1评价类 主观求权重:层次分析法客观求权重:TOPSIS综合评价:典型相关分析 2预测插值算法拟合多元回归分析时间序列分析、ARCH和garch模型岭回归和lasso回归 3关系相关系数典型相关分析多元回归分析灰色关联分析 4图最短路径:迪杰斯…...

13.7 CentOS 7 环境下大量创建帐号的方法
13.7.1 一些帐号相关的检查工具 pwck pwck 这个指令在检查 /etc/passwd 这个帐号配置文件内的信息,与实际的主文件夹是否存在等信息, 还可以比对 /etc/passwd /etc/shadow 的信息是否一致,另外,如果 /etc/passwd 内的数据字段错…...

HTML5 Canvas(画布)
<canvas>标签定义图形,比如图表和其他图像,你必须用脚本来绘制图形。 在画布上( Canvas )画一个共红色矩形,渐变矩形,彩色矩形,和一些彩色文字。 什么是 Canvas? HTML5<c…...
io的异常处理以及properties
try(流对象的创建) { 对象的处理逻辑} catch(IOException e) { 异常的处理逻辑} public static void test4(){try(FileWriter fwnew FileWriter("a.txt",true); ){char[] cbuf{a};//写入一个字符串组fw.write(cbuf);}catch(IOException e){e.printStackTrace();}}上面…...

Linux下基于Dockerfile构建镜像应用(1)
目录 基于已有容器创建镜像 Dockerfile构建SSHD镜像 构建镜像 测试容器 可以登陆 Dockerfile构建httpd镜像 构建镜像 测试容器 Dockerfile构建nginx镜像 构建镜像 概述: Docker 镜像是Docker容器技术中的核心,也是应用打包构建发布的标准格式。…...
JS中常见的模块管理规范梳理
一、CommonJS规范 CommonJS规范是一种用于JavaScript模块化开发的规范,它定义了模块的导入、导出方式和加载机制,主要用在Node开发中。 1. 使用场景 服务器端开发:Node.js是使用CommonJS规范的,因此在服务器端开发中࿰…...
3维空间下按平面和圆柱面上排版设计
AR空间中将若干平面窗口排列在指定平面或圆柱体面上 平面排版思路 指定平面方向向量layout_centre ,平面上的一点作为排版版面的中心layout_position float3 layout_position = float3(0,0,-10); float3 layout_centre = float3(0,0,1...

【Spring框架】Spring AOP
目录 什么是AOP?AOP组成Spring AOP 实现步骤Spring AOP实现原理JDK Proxy VS CGLIB 什么是AOP? AOP(Aspect Oriented Programming):⾯向切⾯编程,它是⼀种思想,它是对某⼀类事情的集中处理。⽐如…...

寻找旋转排序数组中的最小值——力扣153
文章目录 题目描述解法 二分法 题目描述 解法 二分法 int findMin(vector<int>& nums){int l0, rnums.size()-1;while(l<r){int mid (lr)/2;if(nums[mid]<nums[r]) rmid;else lmid1;}return nums[l];}...

安卓逆向 - 基础入门教程
一、引言 1、我们在采集app数据时,有些字段是加密的,如某麦网x-mini-wua x-sgext x-sign x-umt x-utdid等参数,这时候我们需要去分析加密字段的生成。本篇将以采集的角度讲解入门安卓逆向需要掌握的技能、工具。 2、安卓(Androi…...

验证码安全志:AIGC+集成环境信息信息检测
目录 知己知彼,黑灰产破解验证码的过程 AIGC加持,防范黑灰产的破解 魔高一丈,黑灰产AIGC突破常规验证码 双重防护,保障验证码安全 黑灰产经常采用批量撞库方式登录用户账号,然后进行违法违规操作。 黑灰产将各种方…...

R-Meta分析教程
详情点击链接:R-Meta模型教程 一:Meta分析的选题与文献计量分析CiteSpace应用 1、Meta分析的选题与文献检索 1)什么是Meta分析? 2)Meta分析的选题策略 3)文献检索数据库 4)精确检索策略,如何检索全、检索准 5)文献的管理与…...

【3维视觉】3D空间常用算法(点到直线距离、面法线、二面角)
3D空间点到直线的距离 3D空间点到直线的距离 3D空间的曲率 三维空间有三个基本元素,点,线,面。那么曲率是如何定义的呢? 点的曲率? 线的曲率? 面的曲率? 法曲率 设曲面上的曲线在某一点处的切…...

Nodejs 第四章(Npm install 原理)
在执行npm install 的时候发生了什么? 首先安装的依赖都会存放在根目录的node_modules,默认采用扁平化的方式安装,并且排序规则.bin第一个然后系列,再然后按照首字母排序abcd等,并且使用的算法是广度优先遍历,在遍历依…...

[深度学习] GPU处理能力(TFLOPS/TOPS)
计算能力换算 理论峰值 = GPU芯片数量GPU Boost主频核心数量*单个时钟周期内能处理的浮点计算次数 只不过在GPU里单精度和双精度的浮点计算能力需要分开计算,以最新的Tesla P100为例: 双精度理论峰值 = FP64 Cores *…...
js:获取浏览器默认语言
实现代码 navigator.language zh-CN参考文章 [javascript] js如何获取浏览器的语言...

【U8+】用友U8重新注册加密锁,提示:写卡失败,请重新配置客户端控件。
【问题描述】 用友U8软件重新安装后,需要重新注册加密锁激活软件。 注册反馈提示:产品注册失败。 原因(1):写卡失败,请重新配置客户端控件。 【解决方法】 1、打开控制面板,网络和 Internet&a…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...