当前位置: 首页 > news >正文

时间复杂度为O(n2)的三种简单排序算法

1.冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。
在这里插入图片描述

/*** 冒泡排序* 原地排序:是* 稳定排序:是* 空间复杂度:O(1)* 时间复杂度:最好O(n)——最坏O(n^2)——平均O(n^2)[有序度推算]* @param arr*/public static void bubbleSort(int[] arr) {int n = arr.length;if(n<=1) return;for(int i=0;i<n;i++) {boolean flag = false;for(int j=0;j<n-i-1;j++) {if(arr[j]>arr[j+1]) {int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;flag = true;}}if(!flag) break;}System.out.print("[ ");for(int i=0;i<n;i++) {System.out.print(arr[i]+" ");}System.out.println("]");}

2.插入排序

我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有⼀个元素,就是数组的第一个元素。插⼊算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插⼊位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
在这里插入图片描述

/*** 插入排序* 原地排序:是* 稳定排序:是* 空间复杂度:O(1)* 时间复杂度:时间复杂度:最好O(n)——最坏O(n^2)——平均O(n^2)* @param arr*/public static void insertionSort(int[] arr) {int n = arr.length;//从下标为1的位置开始选择合适的位置插入,因为下标为0的只有一个元素,默认为有序for(int i=1;i<n;i++) {int value = arr[i];//记录要插入的数据int j=i-1;for(;j>=0;j--) {if(arr[j]>value) {arr[j+1] = arr[j];//移动数据}else {break;}}arr[j+1] = value;//保存比较小的数,插入}System.out.print("[ ");for(int i=0;i<n;i++) {System.out.print(arr[i]+" ");}System.out.println("]");}

3.选择排序

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
在这里插入图片描述

/*** 选择排序* 原地排序:是* 稳定排序:否* 空间复杂度:O(1)* 时间复杂度:时间复杂度:最好O(n^2)——最坏O(n^2)——平均O(n^2)* @param arr*/public static void selectionSort(int arr[]) {int n = arr.length;for(int i=0;i<n;i++) {int value = arr[i];int index = i;for(int j=i+1;j<n;j++) {if(arr[j]<value) {value = arr[j];index = j;}}if(i != index) {int temp = arr[i];arr[i] = arr[index];arr[index] = temp;}}System.out.println("============================");System.out.print("[ ");for(int k=0;k<n;k++) {System.out.print(arr[k]+" ");}System.out.println("]");}

相关文章:

时间复杂度为O(n2)的三种简单排序算法

1.冒泡排序 冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较&#xff0c;看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少少一个元素移动到它应该在的位置&#xff0c;重复n次&#xff0c;就完成了n个数据的排序工作。 /*** …...

LeetCode 热题 100 JavaScript --226. 翻转二叉树

给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 3&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[] 提示&#xff1a; 树中节点数目范围在 [0, 100] 内 -100 < Node.val < 100 var invertTree function(root…...

hive所有窗口函数详情总结

hive窗口函数详情总结 解释语法hive开窗函数排序开窗函数样例数据RANK()DENSE_RANK()ROW_NUMBER() 分析开窗函数样例数据&#xff1a;last_valuefirst_valuelaglead 其他窗口函数cume_distpercent_rank 解释 开窗函数用于为行定义一个窗口&#xff08;指运算将要操作的行的集合…...

Talk | 新加坡国立大学博士生施宇钧:DragDiffusion-基于扩散模型的关键点拖拽图片编辑

本期为TechBeat人工智能社区第518期线上Talk&#xff01; 北京时间8月2日(周三)20:00&#xff0c; 新加坡国立大学博士生—施宇钧的Talk已准时在TechBeat人工智能社区开播&#xff01; 他与大家分享的主题是: “DragDiffusion-基于扩散模型的关键点拖拽图片编辑”&#xff0c;他…...

22 | 贝叶斯分类算法

文章目录 介绍什么是贝叶斯分类算法?贝叶斯分类算法的应用场景贝叶斯定理贝叶斯定理的基本原理贝叶斯定理的公式推导贝叶斯定理的应用举例代码介绍 什么是贝叶斯分类算法? 贝叶斯分类算法是一类基于贝叶斯定理的分类技术。在统计分类任务中,这些算法使用特定的假设来建立特…...

java.sql.SQLSyntaxErrorException: ORA-00909: 参数个数无效

问题&#xff1a; 在Select里采用Contact(%,#name,%)报错参数个数无效 原因&#xff1a; 回想以前用Mysql的时候就是这样用的&#xff0c;没有问题&#xff0c;在这里就出问题了&#xff0c;所以确定问题在oracle数据库上&#xff0c;经过查询得知&#xff0c;oracle和mysql…...

数据结构8-哈希表

数据结构8-哈希表 动态分配内存方式&#xff1a; #include <stdio.h> #include <stdlib.h>#define SIZE 20struct DataItem {int data; int key; };struct DataItem* hashArray[SIZE]; struct DataItem* dummyItem; struct DataItem* item;//获取键值 int has…...

vue3引用Font-Awesome字体图标库

环境&#xff1a;vue3tsviteelement plus 介绍&#xff1a;这里安装引用的是Font-Awesome 6.x 版本&#xff0c;有专业版&#xff08;付费&#xff09;&#xff0c;这里只介绍免费版字体使用方法 一、安装 1.使用npm安装&#xff0c;终端打开项目目录或者命令行cd到目录文件夹…...

Python: Django 服务部署可能遇到的一些问题

502 bad gateway 不要用 python3 manage.py runserver 启动服务&#xff0c; 而要用&#xff1a; daphne -b 0.0.0.0 -p <端口> <工程名>.asgi:application此外&#xff0c;在 setting.py 中&#xff0c;修改&#xff1a; import osSECRET_KEY os.environ.get(D…...

Python爬虫时遇到连接超时解决方案

在进行Python爬虫任务时&#xff0c;经常会遇到连接超时&#xff08;TimeoutError&#xff09;错误。连接超时意味着爬虫无法在规定的时间内建立与目标服务器的连接&#xff0c;导致请求失败。为了帮助您解决这个常见的问题&#xff0c;本文将提供一些解决办法&#xff0c;并提…...

这所国字头双一流,根本招不满,学硕都没人报!

一、学校及专业介绍 中国民航大学&#xff0c;位于天津市&#xff0c;是民航局、天津市、教育部共建高校&#xff0c;是天津市“双一流”建设高校和高水平特色大学建设高校。 1.1 招生情况 2023年中国民航大学电子信息与自动化学院&#xff0c;初试考806信号与系统的一共有两…...

macos 查询端口占用 命令

在 macOS 上查询端口占用的命令是通过使用lsof&#xff08;list open files&#xff09;工具来实现的。 lsof可以显示当前系统中打开的文件&#xff08;包括网络连接和端口&#xff09;的相关信息。 打开终端应用程序&#xff08;Terminal&#xff09;&#xff0c;然后输入以下…...

无代码开发:打破传统开发模式,引领数字化转型新方向

随着数字化转型的加速&#xff0c;企业对于高效、便捷的软件开发需求愈发旺盛。无代码开发作为一种新兴的软件开发模式&#xff0c;以其可视化、模块化的开发方式&#xff0c;为数字化转型提供了新的方向。本文将从无代码开发的优势、应用场景、如何实现等方面进行详细解读&…...

go-zero超强工具goctl的常用命令api,rpc,model及其构建的服务解析

goctl api 详情移步&#xff1a; go-zero的路由机制解析 基于go-zero的api服务刨析并对比与gin的区别 goctl rpc goctl支持多种rpc&#xff0c;较为流行的是google开源的grpc&#xff0c;这里主要介绍goctl rpc protoc的代码生成与使用。 protoc是grpc的命令&#xff0c;作用…...

手机python编程软件怎么用,手机python编程软件下载

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;手机python编程软件保存的代码在哪里&#xff0c;手机python编程软件怎么运行&#xff0c;现在让我们一起来看看吧&#xff01; 原标题&#xff1a;盘点几个在手机上可以用来学习编程的软件 前天在悟空问答的时候&#…...

【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

家居行业解决方案 | 君子签电子签约助力家居企业减负增效

过去&#xff0c;家居行业因供需两端碎片化、服务链条较长等因素&#xff0c;导致线上发展较为缓慢&#xff0c;近年来&#xff0c;互联网的发展推动直播电商、兴趣电商兴起&#xff0c;促使家居行业数字化建设需求越来越为迫切。 合同管理作为家居行业企业经营的一项重要管理…...

Nodejs 第五章(Npm run 原理)

npm run xxx 发生了什么 按照下面的例子npm run dev 举例过程中发生了什么 读取package json 的scripts 对应的脚本命令(dev:vite),vite是个可执行脚本&#xff0c;他的查找规则是&#xff1a; 先从当前项目的node_modules/.bin去查找可执行命令vite如果没找到就去全局的node…...

150. 逆波兰表达式求值

给你一个字符串数组 tokens &#xff0c;表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意&#xff1a; 有效的算符为 、-、* 和 / 。 每个操作数&#xff08;运算对象&#xff09;都可以是一个整数或者另一个表达式。 两个…...

js中的设计模式

设计模式 代码整体的结构会更加清楚&#xff0c;管理起来会更加方便&#xff0c;更好地维护 设计模式是一种思想 发布订阅 模块化开发 导入很多模块 容器即数组存储未来要执行的方法&#xff0c;同addEventListener 数组塌陷问题* 由于删除了元素&#xff0c;导致从删除元素的位…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...