当前位置: 首页 > news >正文

2023年第四届“华数杯”数学建模思路 - 案例:异常检测

文章目录

    • 赛题思路
      • 一、简介 -- 关于异常检测
        • 异常检测
        • 监督学习
      • 二、异常检测算法
        • 2. 箱线图分析
        • 3. 基于距离/密度
        • 4. 基于划分思想

赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

一、简介 – 关于异常检测

异常检测(outlier detection)在以下场景:

  • 数据预处理
  • 病毒木马检测
  • 工业制造产品检测
  • 网络流量检测

等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:

监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。

以下是异常检测和监督学习相关算法的适用范围:

异常检测

  • 信用卡诈骗
  • 制造业产品异常检
  • 数据中心机器异常检
  • 入侵检测

监督学习

  • 垃圾邮件识别
  • 新闻分类

二、异常检测算法

在这里插入图片描述
在这里插入图片描述

import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)

在这里插入图片描述
在这里插入图片描述

2. 箱线图分析

import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

在这里插入图片描述
大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!

3. 基于距离/密度

典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。

用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。

在这里插入图片描述
在这里插入图片描述

4. 基于划分思想

典型的算法是 “孤立森林,Isolation Forest”,其思想是:

假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。

这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForestrng = np.random.RandomState(42)# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],["training observations","new regular observations", "new abnormal observations"],loc="upper left")
plt.show()

在这里插入图片描述

相关文章:

2023年第四届“华数杯”数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常检测 异常…...

inline的盒子设置transform不生效

目录 如何遇到的问题原因为什么会这样怎么解决 如何遇到的问题 最近在开发过程中,因为需要对一个icon进行旋转,而icon本身,是设置span的伪类来进行的,结果我发现无论怎么设置transform都无法使其生效。 span::before {font-famil…...

自然语言处理学习笔记(四)————词典分词

目录 1.中文分词 2.词典分词 (1)词的定义 (2)词典性质——齐夫定律 (3)词典 (4)加载词典 (5)hanlp词典路径 1.中文分词 中文分词:指的是将一…...

jsoncpp库和nlohmann-json库实现JSON与字符串类型转换

在ROS中&#xff0c;可以使用jsoncpp库来实现JSON与字符串类型之间的转换。jsoncpp是ROS自带的一个JSON库&#xff0c;它提供了一些函数来解析和生成JSON数据。 下面是一个使用jsoncpp库实现JSON与字符串类型转换的示例代码&#xff1a; #include <ros/ros.h> #include…...

20230803 函数传参引用

定义多输出变量的函数时&#xff0c;通过直接传参数内存地址在函数内部直接修改外部变量的值。需要定义函数时 在输入参数前加 引用符号 & 。 C 值传递、指针传递、引用传递详解...

IDEA SpringBoot项目引入外部jar并打包

1、首先&#xff0c;我们再pom.xml中导入依赖包时&#xff0c;打包可以正常进行。 但如果我们引入了第三方的外部jar包&#xff08;这里需要先把jar包添加到该项目依赖库中&#xff0c;这里不做演示&#xff09;&#xff0c;如图 2、导致打包时报错&#xff0c;程序包不存在或…...

ModaHub魔搭社区——阿里云通义千问宣布开源!70亿参数模型上线魔搭社区,免费可商用

通义千问开源!8月3日,AI模型社区魔搭ModaHub上架两款开源模型Qwen-7B和Qwen-7B-Chat,阿里云确认其为通义千问70亿参数通用模型和对话模型,两款模型均开源、免费、可商用。在多个权威测评中,通义千问7B模型取得了远超国内外同等尺寸模型的效果,成为当下业界最强的中英文7B…...

Jenkins 自动化部署实例讲解,另附安装教程!

【2023】Jenkins入门与安装_jenkins最新版本_丶重明的博客-CSDN博客 也可以结合这个互补看 前言 你平常在做自己的项目时&#xff0c;是否有过部署项目太麻烦的想法&#xff1f;如果你是单体项目&#xff0c;可能没什么感触&#xff0c;但如果你是微服务项目&#xff0c;相…...

arcgis字段计算器

1、两字段叠加。要求待叠加的字段类型为文本或字符串类型。如下&#xff1a; 2、字符串部分提取。...

数据结构: 线性表(无哨兵位单链表实现)

文章目录 1. 线性表的链式表示: 链表1.1 顺序表的优缺点1.2 链表的概念1.3 链表的优缺点1.4 链表的结构 2. 单链表的定义2.1 单链表的结构体2.2 接口函数 3. 接口函数的实现3.1 动态申请一个结点 (BuySListNode)3.2 单链表打印 (SListPrint)3.3 单链表尾插 (SListPushBack)3.4 …...

Exploring the Underlying Architecture of CSS3

引言 在现代的网页设计中&#xff0c;CSS&#xff08;层叠样式表&#xff09;起着至关重要的作用。CSS3作为最新的CSS标准&#xff0c;引入了许多令人兴奋的功能和特性。但是&#xff0c;要真正理解CSS3的底层架构实现原理&#xff0c;对于前端开发者来说&#xff0c;是非常重…...

方差分析||判断数据是否符合正态分布

方差分析练习题 练习学习笔记&#xff1a; &#xff08;1&#xff09; 标准差和标准偏差、均方差是一个东西。标准误差和标准误是一个东西。这两个东西有区别。 &#xff08;2&#xff09;单因素方差分析&#xff08;MATLAB求解&#xff09; &#xff08;3&#xff09;使用an…...

java linq多字段排序时间比较

public static void main(String[] args) {//100万条数据List<CrmInvestSaleUserCount> waitAssignUserList new ArrayList<>();for (int i 0; i < 1000000; i) {waitAssignUserList.add(new CrmInvestSaleUserCount().setSales_username("test" i…...

【c++】rand()随机函数的应用(二)——舒尔特方格数字的生成

目录 一、舒尔特方格简介 二、如何生成舒尔特方格 &#xff08;一&#xff09;线性同余法 1、利用线性同余法生成随机数序列的规律 (1) 当a和c选取合适的数时&#xff0c;可以生成周期为m的随机数序列 (2) 种子seed取值也是有周期的 2、利用线性同余法生成5阶舒尔特方格…...

“深入剖析JVM内部机制:探索Java虚拟机的运行原理“

标题&#xff1a;深入剖析JVM内部机制&#xff1a;探索Java虚拟机的运行原理 摘要&#xff1a;本文将深入探讨Java虚拟机&#xff08;JVM&#xff09;的内部机制&#xff0c;包括类加载、内存管理、垃圾回收、即时编译等关键概念和原理&#xff0c;帮助开发者更好地理解JVM的运…...

pandas 新增数据列的几种方式

准备数据 将下面的数据存到csv中 ymd,bWendu,yWendu,tianqi,fengxiang,fengli,aqi,aqiInfo,aqiLevel 2018-01-01,3℃,-6℃,晴~多云,东北风,1-2级,59,良,2 2018-01-02,2℃,-5℃,阴~多云,东北风,1-2级,49,优,1 2018-01-03,2℃,-5℃,多云,北风,1-2级,28,优,1 2018-01-04,0℃,-8℃…...

linux_驱动_iic总线获取si7006温湿度

应用层si7006.c #include<stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <arpa/inet.h>…...

虚拟机网络图标不见了

有3台虚拟机之前正常运行的&#xff0c;有一天打开虚拟机发现2台虚拟机的网络连接图标不见了&#xff0c;也ping不通另外两台。 解决&#xff1a;在终端执行以下命令&#xff0c;即可ping通 [roothadoop103 ~]# sudo nmcli network off [roothadoop103 ~]# sudo nmcli network…...

CTF:信息泄露.(CTFHub靶场环境)

CTF&#xff1a;信息泄露.&#xff08;CTFHub靶场环境&#xff09; “ 信息泄露 ” 是指网站无意间向用户泄露敏感信息&#xff0c;泄露了有关于其他用户的数据&#xff0c;例如&#xff1a;另一个用户名的财务信息&#xff0c;敏感的商业 或 商业数据 &#xff0c;还有一些有…...

Redis学习总结

Redis学习总结 文章目录 Redis学习总结Radis基本介绍docker的安装基本数据结构通用命令字符型key的层次结构Hash类型Listset sortedset集合redis的java客户端jedis的使用jedis连接池的配置 SpringDataRedis自定义redistemplate的序列化与反序列化方式stringtemplate的使用 redi…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...