python中的.nc文件处理 | 04 利用矢量边界提取NC数据
利用矢量边界提取.nc数据
import osimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import seaborn as sns
import geopandas as gpd
import earthpy as et
import xarray as xr
# .nc文件的空间切片包
import regionmask# 绘图选项
sns.set(font_scale=1.3)
sns.set_style("white")
读取数据
data_path_monthly='http://thredds.northwestknowledge.net:8080/thredds/dodsC/agg_macav2metdata_tasmax_BNU-ESM_r1i1p1_rcp45_2006_2099_CONUS_monthly.nc'with xr.open_dataset(data_path_monthly) as file_nc:monthly_forecast_temp_xr=file_ncmonthly_forecast_temp_xr
读取感兴趣区的Shapefile文件
# 下载数据
# et.data.get_data(
# url="https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural/ne_50m_admin_1_states_provinces_lakes.zip")# 读取.shp文件
states_path = "ne_50m_admin_1_states_provinces_lakes"
states_path = os.path.join(states_path,"ne_50m_admin_1_states_provinces_lakes.shp"
)states_gdf=gpd.read_file(states_path)
states_gdf.head()
筛选出California州范围
cali_aoi=states_gdf[states_gdf.name=="California"]
# 获取其外包络矩形坐标
cali_aoi.total_bounds
array([-124.37165376, 32.53336527, -114.12501824, 42.00076797])
根据外包络矩形经纬度对nc数据进行切片
- 利用
sel()函数
# 获取外包络矩形的左下角和右上角经纬度坐标
aoi_lat = [float(cali_aoi.total_bounds[1]), float(cali_aoi.total_bounds[3])]
aoi_lon = [float(cali_aoi.total_bounds[0]), float(cali_aoi.total_bounds[2])]
print(aoi_lat, aoi_lon)
# 将坐标转换为标准经度,即去掉正负号
aoi_lon[0] = aoi_lon[0] + 360
aoi_lon[1] = aoi_lon[1] + 360
print(aoi_lon)
[32.533365269889316, 42.00076797479207] [-124.3716537616361, -114.12501823892204]
[235.62834623836392, 245.87498176107795]
# 根据指定的时间和空间范围进行切片
start_date = "2010-01-15"
end_date = "2010-02-15"two_months_cali = monthly_forecast_temp_xr["air_temperature"].sel(time=slice(start_date, end_date),lon=slice(aoi_lon[0], aoi_lon[1]),lat=slice(aoi_lat[0], aoi_lat[1]))
two_months_cali
# 绘制切片数据分布的直方图
two_months_cali.plot()
plt.show()

# 绘制切片数据的空间分布
two_months_cali.plot(col='time',col_wrap=1)
plt.show()

# 若不指定时间范围
cali_ts = monthly_forecast_temp_xr["air_temperature"].sel(lon=slice(aoi_lon[0], aoi_lon[1]),lat=slice(aoi_lat[0], aoi_lat[1]))
cali_ts
提取每个点的每年的最高气温
cali_annual_max=cali_ts.groupby('time.year').max(skipna=True)
cali_annual_max
提取每年的最高气温
cali_annual_max_val=cali_annual_max.groupby('year').max(["lat","lon"])
cali_annual_max_val
绘制每年的最高温变化图
f,ax=plt.subplots(figsize=(12,6))
cali_annual_max_val.plot.line(hue="lat",marker="o",ax=ax,color="grey",markerfacecolor="purple",markeredgecolor="purple")
ax.set(title="Annual Max Temperature (K) in California")
plt.show()

使用Shapefile对nc文件进行切片
在上述的操作中,使用外包络矩形的坐标对nc数据进行了切片,但有时我们希望能得到不规则边界的数据,此时需要使用到regionmask包创建掩膜
f,ax=plt.subplots()
cali_aoi.plot(ax=ax)
ax.set(title="california AOI Subset")plt.show()

cali_aoi
根据GeoPandasDataFrame生成掩膜
cali_mask=regionmask.mask_3D_geopandas(cali_aoi,monthly_forecast_temp_xr.lon,monthly_forecast_temp_xr.lat)
cali_mask
根据时间和掩膜对数据进行切片
two_months=monthly_forecast_temp_xr.sel(time=slice("2099-10-25","2099-12-15"))two_months=two_months.where(cali_mask)
two_months
绘制掩膜结果
two_months["air_temperature"].plot(col='time',col_wrap=1,figsize=(10, 10))
plt.show()

可以看到此时图中显示范围较大,可以通过设置经纬度进一步切片
two_months_masked = monthly_forecast_temp_xr["air_temperature"].sel(time=slice('2099-10-25','2099-12-15'),lon=slice(aoi_lon[0],aoi_lon[1]),lat=slice(aoi_lat[0],aoi_lat[1])).where(cali_mask)
two_months_masked.dims
('time', 'lat', 'lon', 'region')
two_months_masked.plot(col='time', col_wrap=1)
plt.show()

同时对多个区域进行切片
# 选取多个州
cali_or_wash_nev = states_gdf[states_gdf.name.isin(["California", "Oregon", "Washington", "Nevada"])]
cali_or_wash_nev.plot()
plt.show()

# 根据多个州的范围进行掩膜的生成
west_mask = regionmask.mask_3D_geopandas(cali_or_wash_nev,monthly_forecast_temp_xr.lon,monthly_forecast_temp_xr.lat)
west_mask
帮助生成多个mask的函数
def get_aoi(shp, world=True):"""Takes a geopandas object and converts it to a lat/ lonextent Parameters-----------shp : geopandas objectworld : booleanReturns-------Dictionary of lat and lon spatial bounds"""lon_lat = {}# Get lat min, maxaoi_lat = [float(shp.total_bounds[1]), float(shp.total_bounds[3])]aoi_lon = [float(shp.total_bounds[0]), float(shp.total_bounds[2])]if world:aoi_lon[0] = aoi_lon[0] + 360aoi_lon[1] = aoi_lon[1] + 360lon_lat["lon"] = aoi_lonlon_lat["lat"] = aoi_latreturn lon_latwest_bounds = get_aoi(cali_or_wash_nev)
# 设定提取的起止时间
start_date = "2010-01-15"
end_date = "2010-02-15"# Subset
two_months_west_coast = monthly_forecast_temp_xr["air_temperature"].sel(time=slice(start_date, end_date),lon=slice(west_bounds["lon"][0], west_bounds["lon"][1]),lat=slice(west_bounds["lat"][0], west_bounds["lat"][1]))
two_months_west_coast
two_months_west_coast.plot(col="region",row="time",sharey=False, sharex=False)
plt.show()

计算每个区域的温度均值
summary = two_months_west_coast.groupby("time").mean(["lat", "lon"])
summary.to_dataframe()
本节完整代码
# 提取geopandas对象的外包络矩形经纬度
def get_aoi(shp, world=True):"""Takes a geopandas object and converts it to a lat/ lonextent """lon_lat = {}# Get lat min, maxaoi_lat = [float(shp.total_bounds[1]), float(shp.total_bounds[3])]aoi_lon = [float(shp.total_bounds[0]), float(shp.total_bounds[2])]# Handle the 0-360 lon valuesif world:aoi_lon[0] = aoi_lon[0] + 360aoi_lon[1] = aoi_lon[1] + 360lon_lat["lon"] = aoi_lonlon_lat["lat"] = aoi_latreturn lon_lat
# 本节完整代码# 读取矢量数据
states_path = "ne_50m_admin_1_states_provinces_lakes"
states_path = os.path.join(states_path, "ne_50m_admin_1_states_provinces_lakes.shp")states_gdf = gpd.read_file(states_path)# 读取nc数据
data_path_monthly = 'http://thredds.northwestknowledge.net:8080/thredds/dodsC/agg_macav2metdata_tasmax_BNU-ESM_r1i1p1_rcp45_2006_2099_CONUS_monthly.nc'
with xr.open_dataset(data_path_monthly) as file_nc:monthly_forecast_temp_xr = file_nc# 数据对象
monthly_forecast_temp_xr# 将geopandas对象转换成掩膜
states_gdf["name"]cali_or_wash_nev = states_gdf[states_gdf.name.isin(["California", "Oregon", "Washington", "Nevada"])]west_mask = regionmask.mask_3D_geopandas(cali_or_wash_nev,monthly_forecast_temp_xr.lon,monthly_forecast_temp_xr.lat)
west_mask
west_bounds = get_aoi(cali_or_wash_nev)# 根据时间、掩膜范围对数据进行切片 .sel().where()
start_date = "2010-01-15"
end_date = "2020-02-15"two_months_west_coast = monthly_forecast_temp_xr["air_temperature"].sel(time=slice(start_date, end_date),lon=slice(west_bounds["lon"][0], west_bounds["lon"][1]),lat=slice(west_bounds["lat"][0], west_bounds["lat"][1])).where(west_mask)# 输出切片数据
two_months_west_coast# 直方图绘制
two_months_west_coast.plot()
plt.show()

# 绘制每个区域的变化
regional_summary = two_months_west_coast.groupby("region").mean(["lat", "lon"])
regional_summary.plot(col="region",marker="o",color="grey",markerfacecolor="purple",markeredgecolor="purple",col_wrap=2)
plt.show()

# 转换为dataframe
two_months_west_coast.groupby("region").mean(["lat", "lon"]).to_dataframe()
参考链接:
https://www.earthdatascience.org/courses/use-data-open-source-python/hierarchical-data-formats-hdf/summarize-climate-data-by-season/
https://gitee.com/jiangroubao/learning/tree/master/NetCDF4
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yWEE3qlj-1676603621866)(null)]
相关文章:
python中的.nc文件处理 | 04 利用矢量边界提取NC数据
利用矢量边界提取.nc数据 import osimport numpy as np import pandas as pd import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature import seaborn as sns import geopandas as gpd import earthpy as et import xarray as xr # …...
使用 PyNeuraLogic 超越 Transformers
展示神经符号编程的力量neuro-symbolic1. 简介 在过去的几年里,我们看到了基于 Transformer 的模型的兴起,并在自然语言处理或计算机视觉等许多领域取得了成功的应用。在本文[1]中,我们将探索一种简洁、可解释和可扩展的方式来表达深度学习模…...
微信点金计划(服务商角度)
时间:2023/2/17 背景:微信在推出点金计划后,原本window.WeixinJSBridge.invoke方法的回调失效了,需要在微信支付服务商平台|平台开放更多能力,与服务商一起成长这里进行配置,配置流程跟着官方给…...
2023年美赛 MCM B题 重新构想马赛马拉岛
背景肯尼亚的野生动物保护区最初主要是为了保护野生动物和其他自然资源。肯尼亚议会于2013 年通过了《野生动物保护和管理法》,以提供更公平的资源共享,并允许进行替代的、以社 区为基础的管理工作[1].此后,肯尼亚增加了修正案,以…...
指标体系的应用与搭建
一、指标体系的介绍 体系泛指一定范围内同类事物按照一定的顺序或内在联系而组成的整体。指标体系也一样,指的是不同指标按照一定的顺序及内部联系而组成的整体。此外,在指标体系中,除了以应用为出发点搭建,还会加入使用指南&…...
固态继电器的五大优势
固态继电器的优点和五个关键优势,现代电气控制系统因二极管、晶体管和晶闸管等固态器件的发明而得到极大的增强。对于加热器和电机等大负载设备,固态继电器可能比传统的机械继电器具有巨大的优势。 虽然并非适用于所有情况,但它们具有许多吸引…...
特征检测之HOG特征算法详解及Opencv接口使用
1. HOG特征简介 特征描述符是图像或图像补丁的表示形式,它通过提取有用信息并丢弃无关信息来简化图像。 通常,特征描述符将大小W x H x 3(通道)的图像转换为长度为n的特征向量/数组。对于 HOG 特征描述符,输入图像的…...
一款好的低代码开发平台应该是什么样?
一款好的低代码开发平台应该是什么样? 以企业级应用构建来讲,完成一个应用复杂度随着技术的进步、需求的细化、业务要求的变化并不是逐渐降低,而是逐渐提升。用户想要有更好的体验,复杂度更是成倍提升。 基于此,低代码…...
基于Spring cloud搭建oauth2
1,OAuth2.0简介 OAuth(开发授权)是一个开放标准,允许用户授权第三方应用访问他们存储在另外的服务提供者上的信息,而不需要将用户名和密码提供给第三方应用或分享他们数据的所有内容。 OAuth2.0是OAuth的延续…...
实现一个小程序分享图 wxml2canvas
我们经常会遇上动态生成海报的需求,而在小程序中,生成图片非Canvas莫属。但是在实际工作当中,为了追求效率,我们会不可避免地去使用一些JS插件,而 wxml-to-canvas 就是一款官方推荐且非常优秀的插件,它可以…...
基于matlab设计x波段机载SAR系统
一、前言此示例说明如何设计在 X 波段工作的合成孔径雷达 (SAR) 传感器并计算传感器参数。SAR利用雷达天线在目标区域上的运动来提供目标区域的图像。当SAR平台在目标区域上空行进时,当脉冲从雷达天线发送和接收时,会产生合成孔径…...
WPF学习:Slider — 冒泡显示值
想做一个下图所示的Slider,以冒泡的方式显示其Value值,该怎么做呢? 功能要求,当鼠标放在滑块上的时候,冒“泡”显示值;当滑块移动的时候,“泡”跟随移动。 看似简单的功能,但要完美…...
Vue实战第4章:主页设计之中部内容设计
前言 本篇在讲什么 接上篇文章,我们制作了一个自定义的网页导航栏,本篇文章我们简单制作一个内容页 仅介绍简单的应用,仅供参考 本篇适合什么 适合初学Vue的小白 适合想要自己搭建网站的新手 适合没有接触过vue-router的前端程序 本篇…...
数据结构代码总结(C语言实现)
目录如何应对数据结构的代码题?采取的学习流程①首先对C语言的语法的熟悉②学习掌握基本代码的写法,做到熟练2.1插入排序2.2快速排序2.3二分查找2.4树的遍历③跟着网上视频开始熟悉对一些问题的解答④结合真题的代码,寻找其中的结题规律如何应…...
zookeeper 复习 ---- chapter04
zookeeper 复习 ---- chapter04zookeeper 的精髓是什么? 1:它有四个节点类型 持久无序的节点 临时无序的节点 持久有序的节点 临时有序的节点 临时的节点的特征:当客户端和服务器端断开连接,当前客户端创建的节点被服务器端自动删…...
thinkphp6.0连接MYSQL
目录8.连接多个数据库7.多级控制器不存在6.分页5.非法请求4.关于路由**3.初体验页面****2.加入fileheader添加注释****1.配置mysql0. 官方开发手册一些网址 http://127.0.0.1:8000/index 原桌面 http://127.0.0.1:8000/hello/fsh hello,fsh(index中hello方法&#x…...
商家必读!超店有数分享,tiktok达人营销变现如何更快一步?
近几年来,“粉丝经济”发展越来越迅猛,“网红带货”已经成为了一种营销的方式。这种方式让商家能基于达人的影响下迅速抢占自己的私域流量池。消费者会基于对达人的信任,购买达人推荐的产品。达人效应可以助力品牌走出营销困境。如果商家想要…...
操作系统(day11)--快表,两级页表
具有快表的地址变换机构 时间局限性:会有大量连续的指令需要访问同一个内存块的数据的情况(程序中的循环) 空间局限性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。…...
预告| 亮点抢先看!第四届OpenI/O启智开发者大会主论坛24日启幕!
2023年2月24日至25日,第四届OpenI/O启智开发者大会将在深圳隆重举行。“算网筑基、开源启智、AI赋能”作为今年大会的主题,吸引了全球业界关注的目光。大会集结中国算力网资源基座、开源社区治理及AI开源生态建设、国家级开放创新应用平台、NLP大模型等前…...
猪齿鱼(Choerodon UI )的通用提交的封装 —— 两种方案,A.使用dataSet的自身的submit,B.使用axios.post来提交
submit组件(otherSubmit/axiosSubmit) 一、背景与简介 1、首先我们申请表提交,分为【保存】提交与【其他】提交; 1.1【保存】提交,要求表单必须要有变更,DataToJSON默认为dirty(只转换变更的…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
