机器学习之弹性网络(Elastic Net)
弹性网络
代码原文
下面代码参考scikit-learn中文社区,链接在上面。
但是由于scikit-learn中文社区上的代码有些地方跑不通,故对此代码做了修改,输出结果与社区中显示的结果相同。
对弹性网络进行简单的介绍:
ElasticNet是一个训练时同时用ℓ1和ℓ2范数进行正则化的线性回归模型,lasso是使用ℓ1范数进行正则化的线性回归模型。
弹性网络简弹性网络简介弹性网络简
from itertools import cycle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasetsX, y = datasets.load_diabetes(return_X_y=True)X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)
print("------------------------------------")
print(X)
print("------------------------------------")
print(y)
# Compute pathseps = 5e-3 # the smaller it is the longer is the pathprint("Computing regularization path using the lasso...")
# alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps=eps, fit_intercept=False)
alphas_lasso, coefs_lasso, _ = lasso_path(X, y)print("Computing regularization path using the positive lasso...")
# alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
# X, y, eps=eps, positive=True, fit_intercept=False)
alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(X, y, eps=eps, positive=True)print("Computing regularization path using the elastic net...")
# alphas_enet, coefs_enet, _ = enet_path(
# X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)
alphas_enet, coefs_enet, _ = enet_path(X, y, eps=eps, l1_ratio=0.8)print("Computing regularization path using the positive elastic net...")
# alphas_positive_enet, coefs_positive_enet, _ = enet_path(
# X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
alphas_positive_enet, coefs_positive_enet, _ = enet_path(X, y, eps=eps, l1_ratio=0.8, positive=True)
print("------------------------------------")
print(alphas_positive_enet)
print("------------------------------------")
print(coefs_positive_enet)
# Display resultsplt.figure(1)
colors = cycle(['b', 'r', 'g', 'c', 'k'])
neg_log_alphas_lasso = -np.log10(alphas_lasso)
neg_log_alphas_enet = -np.log10(alphas_enet)
for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors):l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c)plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
plt.axis('tight')plt.figure(2)
neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso)
for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors):l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c)plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and positive Lasso')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
plt.axis('tight')plt.figure(3)
neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet)
for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors):l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c)l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c)plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Elastic-Net and positive Elastic-Net')
plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),loc='lower left')
plt.axis('tight')
plt.show()相关文章:
机器学习之弹性网络(Elastic Net)
弹性网络 代码原文 下面代码参考scikit-learn中文社区,链接在上面。 但是由于scikit-learn中文社区上的代码有些地方跑不通,故对此代码做了修改,输出结果与社区中显示的结果相同。 对弹性网络进行简单的介绍: ElasticNet是一个训…...
嵌入式入门教学——C51
一、前期准备 1、硬件设备 2、软件设备 二、预备知识 1、什么是单片机? 在一片集成电路芯片上集成微处理器、存储器、IO接口电路,从而构成了单芯片微型计算机,及单片机。STC89C52单片机: STC:公司89:所属…...
2023-08-03力扣每日一题
链接: 722. 删除注释 题意: 如题,特殊规则见链接 解: 字符串处理,嗯写就完事了,主要是判断指针位置和特殊规则 实际代码: #include<bits/stdc.h> using namespace std; vector<string> …...
【蓝桥杯备考资料】如何进入国赛?
目录 写在前面注意事项数组、字符串处理BigInteger日期问题DFS 2013年真题Java B组世纪末的星期马虎的算式振兴中华黄金连分数有理数类(填空题)三部排序(填空题)错误票据幸运数字带分数连号区间数 2014年真题蓝桥杯Java B组03猜字…...
QtWebApp开发https服务器,完成客户端与服务器基于ssl的双向认证
引言:所谓http协议,本质上也是基于TCP/IP上服务器与客户端请求和应答的标准,web开发中常用的http server有apache和nginx。Qt程序作为http client可以使用QNetworkAccessManager很方便的进行http相关的操作。Qt本身并没有http server相关的库…...
动态IP代理的优势展现与应用场景
在当今数字化时代,网络安全和隐私保护变得愈发重要。作为一家动态IP代理产品供应商,我们深知在保护个人隐私和提高网络安全性方面的重要性。本文将会分享动态IP代理的优势及其在不同应用场景下的实际应用案例,帮助更好地了解和应用动态IP代理…...
ad+硬件每日学习十个知识点(22)23.8.2(LDO datasheet手册解读)
文章目录 1.LDO的概述、features2.LDO的绝对参数(功率升温和结温)3.LDO的引脚功能4.LDO的电气特性5.LDO的典型电路(电容不能真用1uF,虽然按比例取输出值,但是R2的取值要考虑释放电流)6.LDO的开关速度和线性…...
这可是全网最全的网络工程师零基础实战视频整理,最新版分享
互联网中每一项傍身的技能都是需要从如何入门开始的,网络技术也是如此! 网络技术区别其他互联网技能的一点是学习需要从设备开始,只有认识了解了路由器、交换机、防火墙这些网络设备,才开始从网络通信原理开始,这使得网…...
笔记本WIFI连接无网络【实测有效解决方案,不用重启电脑】
笔记本Wifi连接无网络实测有效解决方案 问题描述: 笔记本买来一段时间后,WIFI网络连接开机一段时间还正常连接,但是过一段时间显示网络连接不上解决方案: 1.编写网络重启bat脚本,将以下内容写到文本文件,把…...
js 正则表达式配合replace进行过滤html字符串遇到的性能问题
问题场景复现: 博主要实现一个邮箱列表,其中列表中的每一封邮件都有一个摘要,但是摘要是要自己从后端提供的content内容区自己过滤掉所有,只留下纯文本内容的前面几行作为摘要。 性能问题 当我测试到一个邮箱,其中的…...
2022牛客寒假算法基础集训营1
B题 炸鸡块君与FIFA22 题目大意: 给出胜负序列,每次询问区间 (l,r,s) ,回答在经历 (l-r) 之后积分是多少,初始积分为 (s) 胜 (1) 积分,平 (0) 积分,败的时候如果此时积分为 (3) 的倍数则 (-0) ,…...
API对接:构建连接不同系统的技术桥梁
API(Application Programming Interface)是一种用于不同软件系统之间进行通信和数据交换的技术。本文将介绍API对接的基本概念和原理,并通过代码示例演示如何使用API对接不同系统,解决数据传输与通信的难题。 在当今数字化时代&a…...
【MySQL】仓储--维护出入库流水、库存,去重数量逻辑修正
系列文章 C#底层库–MySQLBuilder脚本构建类(select、insert、update、in、带条件的SQL自动生成) 本文链接:https://blog.csdn.net/youcheng_ge/article/details/129179216 C#底层库–MySQL数据库操作辅助类(推荐阅读࿰…...
用Log4j 2记录日志
说明 maven工程中增加对Log4j 2的依赖 下面代码示例的maven工程中的pom.xml文件中需要增加对Log4j 2的依赖: <dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-core</artifactId><version>2.20.0&…...
【Java面试】Paxos和Raft协议的区别?
面试官:你简历上说了解Paxos和Raft协议,说一下你对这两个协议的了解? 我:Paxos算法和Raft算法都是用于实现分布式系统中的一致性的算法,确保不同节点之间的数据一致。 我:Paxos算法它的目标是使多个节点能…...
手机浏览器H5打开微信小程序支付,自定义传参
微信官方提供的开放文档如下: 静态网站 H5 跳小程序 | 微信开放文档 想必大家都能看懂官网提供的文档,但实战时却遇到很多问题,博主总结一下遇到的坑,如果您也有遇到,希望可以帮到您。 1.小程序已经发布上线了&…...
Aligning Large Language Models with Human: A Survey
本文也是LLM相关的综述文章,针对《Aligning Large Language Models with Human: A Survey》的翻译。 对齐人类与大语言模型:综述 摘要1 引言2 对齐数据收集2.1 来自人类的指令2.1.1 NLP基准2.1.2 人工构造指令 2.2 来自强大LLM的指令2.2.1 自指令2.2.2 …...
windows图标白了,刷新图标
1.进入C盘,user(用户文件夹),进入当前用户文件夹,再进入隐藏文件夹(AppDada),最后进入Local 2.删除Local文件夹里的IconCache.db文件 3.重启资源管理器 -------------------------------------------- 或者创建bat文件…...
C++ 左值和右值
C 左值和右值 左值、右值左值引用、右值引用std::move()std::move()的实现引用折叠 完美转发forward()的实现函数返回值是左值还是右值如何判断一个值是左值还是右值 左值、右值 在C11中所有的值必属于左值、右值两者之一,右值又可以细分为纯右值、将亡值。在C11中…...
c++学习(智能指针)[29]
RALL RALL(Resource Acquisition Is Initialization)是一种 C 的编程技术,用于管理资源的获取和释放。它的基本思想是在对象的构造函数中获取资源,在对象的析构函数中释放资源,从而确保资源的正确获取和释放。 RALL 的…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
