当前位置: 首页 > news >正文

云上 Index:看「简墨」如何为云原生打造全新索引

拓数派首款数据计算引擎 PieCloudDB Database 是一款全新的云原生虚拟数仓。为了提升用户使用体验,提高查询效率,在实现存算分离的同时,PieCloudDB 设计与打造了全新的存储引擎「简墨」等模块,并针对云场景和分析型场景设计了高效的「Data Skipping」索引。本文将详细介绍 PieCloudDB 的存储和索引的设计与打造过程,并将通过示例来演示 PieCloudDB 如何使用 Data Skipping 索引加速查询的效率。

作为一款云原生虚拟数仓,PieCloudDB 依赖于云计算所提供的基础设施服务,包括大规模分布式集群、虚拟机、容器等。通过利用这些服务,PieCloudDB 可以更好地适应动态的和不断变化的工作负载需求,并将实现高可用、易扩展、异地多活和弹性伸缩等特性。

索引是数据库系统提升查询效率的关键技术,其设计与存储息息相关。为了更好地适应云原生和分析型场景的要求,PieCloudDB 必须使用合理的存储架构及技术,打造一款全新的存储引擎,并实现高效的云上索引技术,满足用户查询需求。PieCloudDB 的存储作为将应用程序和用户数据连接起来的关键桥梁,是云原生虚拟数仓应用的核心组成部分。PieCloudDB 全新存储引擎「简墨」是一款专为云原生和分析型场景设计的高效存储引擎,旨在提供优异的查询性能和灵活的索引技术,以满足用户在云上的数据查询需求。其命名源自「竹简墨书」。

在介绍云上 Index 「Data Skipping」之前,我们先了解一下 PieCloudDB 存储的设计逻辑。

1 存储的详细设计

为了让 PieCloudDB 能够满足不同类型的应用程序要求,PieCloudDB 所打造的存储被分为持久层和数据层两个存储层次:

  • 持久层:持久层是 PieCloudDB 中的底层存储,通常采用分布式文件系统或对象存储系统 等云原生存储,如 AWS S3、Azure Blob Storage 等。持久层具有高可用性、持久性等特点,能够安全地保持数据并保证数据的长期存储。
  • 数据层:数据层是 PieCloudDB 的上层抽象,提供面向应用程序的标准访问接口,包括半结构化数据、结构化数据和支持 SQL 的无结构化数据存储。

基于上述存储层设计,PieCloudDB 可以满足许多不同类型的应用程序需求。同时,在云计算基础设施的帮助下,PieCloudDB 已实现容器化部署、自动化运维、微服务架构等功能,这样的架构设计为企业用户提供更高效、更可靠、更灵活以及成本更低的解决方案。

1.1 PieCloudDB 数据的持久化设计

对于数据的持久化的设计,通常有如下三种形式:

  • N 元存储模型(即通常所说的行存)
  • 分解存储模型(即通常所说的列存)
  • 混合存储模型

PieCloudDB 采用了第三种:混合存储模型。混合存储模型是将一组数据水平分组,然后将它们的属性垂直划分为列。通过这样的存储模型,PieCloudDB 得以获得列式存储高效处理和压缩友好等优势,同时保留行存储的空间局部性优势,降低数据重组的开销。这一存储模型的选择也影响了 PieCloudDB 中的索引设计,后文将详细介绍。

1.2 PieCloudDB 存储底座

PieCloudDB 使用对象存储技术作为云原生虚拟数仓存储底层。对象存储可以带来可伸缩性、弹性扩展和高度容错性等优点。然而,在实际的使用过程中往往也遇到一些限制,主要包括以下几个方面:

  • 延迟:与传统的块存储技术相比,对象存储技术往往具有较高的延迟,因此在某些应用场景下,可能会对数据库的性能产生一定影响。
  • 大规模重写操作难以支持:对象存储基于分布式系统实现,而复杂的存储操作(如大规模数据的重写)实现起来是比较困难的,但是,这类操作在关系型数据库中常常会遇到。
  • 事务管理:对象存储通常提供了乐观并发控制等简单的事务管理机制,但是它们在处理分布式事务时很复杂,并且由于分散在多处,难以跨所有节点维护一个全局锁或者其他的协调机制。
  • 数据一致性:尽管对象存储具有高可靠性和冗余性,但其异步特性意味着分布式数据的一致性需要通过额外的手段来维护,远比其他的分布式数据库解决方案更为复杂,同时也存在较高的管理成本。

PieCloudDB 在存储的打造过程中进行了大量设计来弥补这些限制,保证用户的使用体验。例如针对其中第二个方面,PieCloudDB 的持久化文件在生成后无法进行原地修改。因此,PieCloudDB 在 update/delete 删除时,会生成新的文件,在新文件中将包含未修改的数据和新增的修改后的数据,并将保留旧的数据文件。相关细节将在未来的技术文章中进行说明,欢迎关注。

2 PieCloudDB 中的索引

基于云的基础设施的特点和 PieCloudDB 的存储设计思路,PieCloudDB 的存储具有以下两个重要的特性。

  • 使用混合存储模型
  • 持久化的文件不会被修改

这些特性也决定了 PieCloudDB 索引的打造思路。在详细介绍 PieCloudDB 的索引特性前,我们先了解一下索引的常见类型。

2.1 索引的常见类型

在 OLTP 场景中,数据库通常处理大量的短期事务,需要高效地执行单个记录的读写操作。为了避免对数据进行全量扫描,采用基于树的索引结构(如 B+Tree)可以加速少量数据的查询。这些索引帮助数据库引擎快速定位到特定记录,从而提高读取和写入的性能。随着数据的增量更新,索引也需要随之更新以保持数据的一致性和性能。

而在 OLAP 场景中,数据库通常面对大量数据的分析查询,例如数据仓库和数据分析。在这种情况下,很少涉及单个记录的查找,而是涉及到对大量数据的聚合、过滤和分析。传统的索引结构可能不再适用,因为对大规模数据集的全量扫描可能会变得非常耗时。

为了加速 OLAP 查询的执行,PieCloudDB 采用数据跳跃(Data Skipping)技术。数据跳跃是一种先进的优化技术,用于尽可能减少扫描数据时的 I/O 开销。它的主要思想是在执行查询时,跳过对那些不符合查询条件的数据块或分区的扫描。这样可以有效地减少 I/O 操作,从而加速查询的执行速度。

2.2 PieCloudDB 中的 Data Skipping 索引

Zone Map 索引和 BRIN(Block Range INdex)索引是在 OLAP 场景中常见的数据跳跃(Data Skipping)技术的具体实现方式。它们都利用了预先计算的统计信息来跳过不符合查询条件的数据块,从而加速查询的执行。

Zone Map 是通过存储每个数据块的选定列的预先计算统计信息,例如最小值和最大值,以及其他聚合信息。在查询期间,数据库可以使用这些统计信息来裁减要访问的数据块,从而减少不必要的 I/O 操作,提高查询性能。这在 OLAP 场景中对大规模数据集的查询非常有用。

在 PieCloudDB 中,每个数据块即是一组记录的列存数据。在数据导入时,每个文件将会统计对应数据块所需列的统计信息,得益于数据存储的实现,每列的统计过程和存储也变得更为简单高效。

2.3 示例

在 PieCloudDB 中,当用户进行查询时,对于每一个数据块,首先会通过查询条件对应列的统计信息判断是否满足条件,如果满足则访问该数据块,如果不满足则跳过该数据块。接下来我们将通过一个示例为大家详细演示 PieCloudDB 的 Data Skipping 功能。

首先,创建一张表,分次导入一些测试数据。

create table dataskip (a int, b int); 
insert into dataskip select i, i*2 from generate_series(1, 1000)i; 
insert into dataskip select i, i*2 from generate_series(1001, 2000)i; 
insert into dataskip select i, i*2 from generate_series(2001, 3000)i; 
insert into dataskip select i, i*2 from generate_series(3001, 4000)i; 
insert into dataskip select i, i*2 from generate_series(4001, 5000)i; 
insert into dataskip select i, i*2 from generate_series(5001, 6000)i; 
insert into dataskip select i, i*2 from generate_series(6001, 7000)i; 
insert into dataskip select i, i*2 from generate_series(7001, 8000)i; 
insert into dataskip select i, i*2 from generate_series(8001, 9000)i; 
insert into dataskip select i, i*2 from generate_series(9001, 10000)i; 

现在来执行查询:

demo=# explain analyze select * from dataskip where a < 10; QUERY PLAN 
---------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (cost=2.00..10.21 rows=3 width=8) (actual time=34.361..36.928 rows=9 loops=1) 
-> Bitmap Heap Scan on dataskip (cost=2.00..10.17 rows=1 width=8) (actual time=16.189..31.790 rows=5 loops=1) Recheck Cond: (a < 10) Rows Removed by Index Recheck: 316 -> Bitmap Index Scan on dataskip (cost=0.00..2.00 rows=333 width=0) (actual time=2.908..2.910 rows=1 loops=1) Index Cond: (a < 10) 
Planning Time: 4.259 ms (slice0) Executor memory: 159K bytes. (slice1) Executor memory: 32972K bytes avg x 3 workers, 32972K bytes max (seg0). 
Memory used: 128000kB 
Optimizer: Postgres query optimizer 
Execution Time: 55.895 ms 
(12 rows) 

如果关闭 Data Skipping 查询

demo=# set enable_bitmapscan = off; 
SET 
demo=# explain analyze select * from dataskip where a < 10; QUERY PLAN 
---------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (cost=0.00..51.71 rows=3 width=8) (actual time=129.916..140.925 rows=9 loops=1) -> Seq Scan on dataskip (cost=0.00..51.67 rows=1 width=8) (actual time=2.939..132.546 rows=5 loops=1) Filter: (a < 10) Rows Removed by Filter: 3292 
Planning Time: 0.099 ms (slice0) Executor memory: 123K bytes. (slice1) Executor memory: 32825K bytes avg x 3 workers, 32825K bytes max (seg0). 
Memory used: 128000kB 
Optimizer: Postgres query optimizer 
Execution Time: 154.416 ms 
(10 rows) 

可以看到,当关闭 Data Skipping 时,可以看到执行时间是使用时的三倍。 

这里还面临查询优化器的一个挑战,在复杂的 join 查询条件下,需要尽可能的将 join 条件或 where 条件下推到扫描节点上来尽可能的利用 Data Skipping。在这一点上,PieCloudDB 远胜于其他的产品。 

demo=# explain analyze select * from dataskip join jtbl on dataskip.a = jtbl.a and jtbl.a < 10; QUERY PLAN 
---------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (cost=2.00..15.47 rows=3 width=16) (actual time=33.638..33.712 rows=9 loops=1) -> Nested Loop (cost=2.00..15.43 rows=1 width=16) (actual time=33.300..33.405 rows=5 loops=1) Join Filter: (dataskip.a = jtbl.a) Rows Removed by Join Filter: 20 -> Redistribute Motion 3:3 (slice2; segments: 3) (cost=0.00..5.21 rows=2 width=8) (actual time=0.003..0.013 rows=5 loops=1) Hash Key: jtbl.a -> Seq Scan on jtbl (cost=0.00..5.17 rows=2 width=8) (actual time=3.144..20.979 rows=3 loops=1) Filter: (a < 10) Rows Removed by Filter: 356 -> Materialize (cost=2.00..10.19 rows=1 width=8) (actual time=5.547..5.554 rows=4 loops=6) -> Redistribute Motion 3:3 (slice3; segments: 3) (cost=2.00..10.19 rows=1 width=8) (actual time=33.130..33.269 rows=5 loops=1) Hash Key: dataskip.a -> Bitmap Heap Scan on dataskip (cost=2.00..10.17 rows=1 width=8) (actual time=11.766..24.910 rows=5 loops=1) Recheck Cond: (a < 10) Rows Removed by Index Recheck: 316 -> Bitmap Index Scan on dataskip (cost=0.00..2.00 rows=333 width=0) (actual time=2.783..2.784 rows=1 loops=1) Index Cond: (a < 10) 
Planning Time: 6.522 ms (slice0) Executor memory: 220K bytes. (slice1) Executor memory: 79K bytes avg x 3 workers, 80K bytes max (seg0). Work_mem: 17K bytes max. (slice2) Executor memory: 32826K bytes avg x 3 workers, 32826K bytes max (seg0). (slice3) Executor memory: 32975K bytes avg x 3 workers, 32975K bytes max (seg0). 
Memory used: 128000kB 
Optimizer: Postgres query optimizer 
Execution Time: 68.989 ms 
(25 rows) 

对于相同的 Query,当我们关掉 Data Skipping 时,查询时间又变成了前者的 3 倍。 

demo=# set enable_bitmapscan = off; 
SET 
demo=# explain analyze select * from dataskip join jtbl on dataskip.a = jtbl.a and jtbl.a < 10; QUERY PLAN 
---------------------------------------------------------------------------------Gather Motion 3:1 (slice1; segments: 3) (cost=0.00..56.97 rows=3 width=16) (actual time=139.811..139.886 rows=9 loops=1) -> Nested Loop (cost=0.00..56.92 rows=1 width=16) (actual time=139.587..139.691 rows=5 loops=1) Join Filter: (dataskip.a = jtbl.a) Rows Removed by Join Filter: 20 -> Redistribute Motion 3:3 (slice2; segments: 3) (cost=0.00..5.21 rows=2 width=8) (actual time=0.003..0.011 rows=5 loops=1) Hash Key: jtbl.a -> Seq Scan on jtbl (cost=0.00..5.17 rows=2 width=8) (actual time=1.758..21.023 rows=3 loops=1) Filter: (a < 10) Rows Removed by Filter: 356 -> Materialize (cost=0.00..51.69 rows=1 width=8) (actual time=23.262..23.269 rows=4 loops=6) -> Redistribute Motion 3:3 (slice3; segments: 3) (cost=0.00..51.69 rows=1 width=8) (actual time=136.260..139.557 rows=5 loops=1) Hash Key: dataskip.a -> Seq Scan on dataskip (cost=0.00..51.67 rows=1 width=8) (actual time=1.730..134.913 rows=5 loops=1) Filter: (a < 10) Rows Removed by Filter: 3292 
Planning Time: 0.248 ms (slice0) Executor memory: 185K bytes. (slice1) Executor memory: 79K bytes avg x 3 workers, 80K bytes max (seg0). Work_mem: 17K bytes max. (slice2) Executor memory: 32826K bytes avg x 3 workers, 32826K bytes max (seg0). (slice3) Executor memory: 32827K bytes avg x 3 workers, 32827K bytes max (seg0). 
Memory used: 128000kB 
Optimizer: Postgres query optimizer 
Execution Time: 155.026 ms 
(23 rows) 

2.4 Primary Key 的支持 

对于一般的 OLTP 数据库中,Primary Key 的作用主要包含以下几个方面: 

  • 加速点查 
  • 确保唯一性约束 
  • 确保非空约束 

然而,在 OLAP 数据库中,因为其主要面向分析查询,点查(Point Lookup)的需求较少,而全表扫描和大规模数据跳跃技术更为重要。因此,一些 OLAP 数据库在实现 Primary Key 时会做出相应的调整。 

例如,在 ClickHouse 中,Primary Key 被用于数据加载时进行排序,排序之后的数据可大大提高 Data Skipping 的性能。在 Snowflake 中也有类似的 Cluster Key 来使数据块具有聚集性,再通过 Auto Cluster(自动聚集)来提高 Data Skipping 的性能(Databricks 也采用类似的方式)。 

在 PieCloudDB 中 Primary Key 支持非空约束,但是对于查询的加速,一般使用 Data Skipping。对于唯一值约束,PieCloudDB 中暂不支持。 

3 PieCloudDB 的索引探索之路 

除了 Data Skipping,PieCloudDB 也在调研和实现多种多样的索引以提供不同场景的性能提升,包括基于 Data Skipping 思路的其他索引探索和 OLTP 场景下的索引探索。 

3.1 基于 Data Skipping 思路的其他索引探索

在上述的讨论中,PieCloudDB 中目前的索引按分类属于稀疏索引(Sparse Index),除了通常的 Zone Map 类型索引之外,常见的还有如下实现: 

  • 基于 bitmap 的索引 
  • bloom filter 
  • column sketchs 
  • column imprints 
  • ...... 

3.2 OLTP 场景下的索引 

上述讨论中,我们也提到了传统的基于树的索引例如 B+Tree 等。类似这一类的索引也被称为密集索引(dense index)。在 PieCloudDB 中,我们也不能完全排除其对查询的实际意义,我们将持续对这一领域进行探索。 

相关文章:

云上 Index:看「简墨」如何为云原生打造全新索引

拓数派首款数据计算引擎 PieCloudDB Database 是一款全新的云原生虚拟数仓。为了提升用户使用体验&#xff0c;提高查询效率&#xff0c;在实现存算分离的同时&#xff0c;PieCloudDB 设计与打造了全新的存储引擎「简墨」等模块&#xff0c;并针对云场景和分析型场景设计了高效…...

Linux安装cuda和cudnn教程

Linux安装cuda和cudnn教程 文章目录 1.下载cuda和cudnn2. 安装cuda并检验安装是否成功3. 安装cudnn4.验证cuda是否能用代码附件&#xff1a;解压各种格式文件的Linux命令参考文献 卸载之前的cuda 卸载之前的cuda教程 1.下载cuda和cudnn CUDA下载地址&#xff1a;https://dev…...

短视频矩阵源码

一、短视频矩阵源码搭建解析&#xff1a; 目录 一、短视频矩阵源码搭建解析&#xff1a; 二、短视频矩阵源码的开发路径分享&#xff1a; 三、短视频矩阵系统开发应具备哪些能力&#xff1f; 短视频技术开发能力&#xff1a; 开发人员应具备短视频相关技术能力&#xff0c…...

群狼调研—连锁化妆品品牌门店神秘顾客调查的行家

连锁化妆品品牌门店神秘顾客调查作为群狼调研(湖南专业市场调查)的优势业务之一&#xff0c;公司成立至今已承包包括北京、上海、广州、深圳、长沙在内全国多个城市上百家不同化妆品品牌客户的神秘顾客调查服务&#xff0c;在创新性、行业操守及客户服务等方面赢得了广大客户的…...

C# 回文链表

234 回文链表 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true 示例 2&#xff1a; 输入&…...

基于freertos的温湿度蓝牙系统

前言&#xff1a;本项目主要是基于freertos的小项目&#xff0c;目的是为了巩固近期学习的知识&#xff0c;功能较简单&#xff0c;可自行扩充。 一、项目基本架构 项目基本功能&#xff1a;通过STM32单片机的freertos操作系统&#xff0c;将温湿度数据显示在oled屏幕上&#…...

华为云CTS 使用场景

云审计服务 CTS 云审计服务&#xff08;Cloud Trace Service&#xff09;&#xff0c;帮助您监控并记录华为云账号的活动&#xff0c;包括通过控制台、API、开发者工具对云上产品和服务的访问和使用行为&#xff0c;提供对各种云资源操作记录的收集、存储和查询功能&#xff0…...

【css】nth-child选择器实现表格的斑马纹效果

nth-child() 选择器可以实现为所有偶数&#xff08;或奇数&#xff09;的表格行添加css样式&#xff0c;even&#xff1a;偶数&#xff0c;odd&#xff1a;奇数。 代码&#xff1a; <style> table {border-collapse: collapse;width: 100%; }th, td {text-align: cente…...

找视频素材就上这8个网站,免费可商用,马住了。

自媒体创作者&#xff0c;视频剪辑一定要知道这8个高质量视频素材网站&#xff0c;免费可商用&#xff0c;赶紧收藏&#xff01; 菜鸟图库 https://www.sucai999.com/video.html?vNTYxMjky 菜鸟图库网素材非常丰富&#xff0c;网站主要还是以设计类素材为主&#xff0c;高清视…...

Springboot部署ELK实战

Springboot部署ELK实战 1、部署docker、docker-compose环境安装docker安装docker-compose 2、搭建elk1、构建目录&&配置文件1、docker-compose.yml 文档2、Kibana.yml3、log-config.conf 2、添加es分词器插件3、启动 3、Springboot项目引入es、logStash配置1、引入依赖…...

【Leetcode】76.最小覆盖子串(困难)

一、题目 1、题目描述 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 ""。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。如果 s 中存…...

C++ 指针函数和函数指针

除了void类型的函数之外&#xff0c;函数在调用结束之后都要有返回值&#xff0c;指针也可以是函数的返回值。当一个函数的返回值是指针类型时&#xff0c;这个函数就是指针型函数。 使用指针型函数的最主要目的就是要在函数结束时把大量的数据从被调函数返回到主调函数中。而通…...

JAVA实现存在更新不存在插入与及多余的进行删除(三)

这个版本&#xff0c;主要是迭代重载了下save方法&#xff0c;不废话&#xff0c;直接上代码&#xff1a; /*** 保存数据&#xff0c;处理数据的增删改** param paramData 前台的参数* param dbData 后台的数据* param clazz 前后台参数对应的class* param beanName …...

iMX6ULL驱动开发 | OLED显示屏SPI驱动实现(SH1106,ssd1306)

周日业余时间太无聊&#xff0c;又不喜欢玩游戏&#xff0c;大家的兴趣爱好都是啥&#xff1f;我觉得敲代码也是一种兴趣爱好。正巧手边有一块儿0.96寸的OLED显示屏&#xff0c;一直在吃灰&#xff0c;何不把玩一把&#xff1f;于是说干就干&#xff0c;最后在我的imax6ul的lin…...

拥抱创新:用Kotlin开发高效Android应用

拥抱创新&#xff1a;用Kotlin开发高效Android应用 引言 在当今数字时代&#xff0c;移动应用已经成为人们生活中不可或缺的一部分。无论是社交媒体、电子商务还是健康管理&#xff0c;移动应用已经深刻地影响了我们的生活方式。随着移动设备的普及和功能的增强&#xff0c;A…...

Effective Java笔记(20)接口优于抽象类

Java提供了两种机制&#xff0c;可以用来定义允许多个实现的类型&#xff1a;接口和抽象类。自从Java 8为继承引入了缺省方法( default method)&#xff0c;这两种机制都允许为某些实例方法提供实现。主要的区别在于&#xff0c;为了实现由抽象类定义的类型&#xff0c;类必须成…...

react学习笔记——1. hello react

包含的包一共有4个&#xff0c;分别的作用如下&#xff1a; babel.min.js&#xff1a;可以进行ES6到ES5的语法转换&#xff1b;可以用于import&#xff1b;可以用于将jsx转换为js。注意&#xff0c;在开发的时候&#xff0c;这个转换&#xff08;jsx转换js&#xff09;不在线上…...

明明已经安装字体,但IDEA、CLION无法找到思源黑体/Source Hans Sans的问题解决

IDEA、CLION的Jetbrain系列软件不支持非TrueType的中文字体&#xff0c;而Adobe官方给出的字体却不是TrueType的&#xff0c;所以便会导致Jetbrain系软件无法找到已安装的中文字体&#xff0c;因此我们需要安装TrueType的字体 请在以下Github链接中下载&#xff1a; TrueType思…...

2023-08-03力扣今日四题

链接&#xff1a; 剑指 Offer 67. 把字符串转换成整数 题意&#xff1a; 按规则将字符串转换成整数&#xff0c;规则不详叙 解&#xff1a; 字符串处理 实际代码&#xff1a; #include<iostream> #include<cstring> #include<climits> using namespac…...

【学会动态规划】最佳买卖股票时机含冷冻期(15)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...