当前位置: 首页 > news >正文

网络安全设备-等保一体机

本文为作者学习文章,按作者习惯写成,如有错误或需要追加内容请留言(不喜勿喷)
本文为追加文章,后期慢慢追加
等保一体机的功能

等保一体机产品主要依赖于其丰富的安全网元(安全网元包括:防火墙、IPS、WAF、网络审计、数据库审计、EDR、VPN、基线、漏扫、堡垒机、日志收集分析等安全功能,这些功能都是以虚拟化的形式进行安全交付;防护范围涵盖网络安全、主机安全、应用安全、数据安全)。这使其不仅具有便捷部署、统一交付、灵活拓展等特点,可以帮助客户实现全网统一管控、威胁可视,有效应对网络环境中的多种安全威胁。

等保一体机的可以解决的安全现状

时间成本和管理成本高、实施复杂、运维管理难等难题

等保一体机的优点

1、综合作用:等保一体机可提供下一代防火墙、数据库审计及风险控制系统、WEB应用防火墙系统、堡垒机、VPN、如入侵检测保护系统,具有更全面、更强大的特点和更有效的维护功能。这个是最牛逼的,只要有钱,加啥安全网元都可以,但是要一开始的硬件性能足够强大。

2、统一管理:安全组件统一界面管理,一键登录,操作维护简单,实现快速交付,提高了客户管理各种产品带来的复杂操作维护难度。同时为客户节省了购买类型带来的巨大运营成本。

3、按需分配:等保一体机集多个安全部件于一体,用户可根据需要选择安全部件,调度灵便,分配简单,扩展弹性。
注: 这个观点存在质疑,离开设备性能谈扩展能力就是耍流氓,一般情况下都是按照服务器性能最低性能配置网元,你再加一个网元加不了,这个谈什么扩展能力?????

4、等保一体机涵盖了用户等保建设整改过程中所有技术方面,实现南北向和云平台的东西向安全防护,满足最新等级保护标准要求。

5、具备安全统一管控能力,对多种安全网元集中管理,动态调整防护层级,按需调整防护策略,有效简化客户的运维管理工作。

等保一体机的缺点

1、价格高:等保一体机相对于传统的安全设备价格较高,对于小企业来说可能承受不起。

2、功能限制:由于集成了多种安全功能,等保一体机在某些方面的功能可能无法与专业的单一安全设备相媲美。这个功能属于假想状态,没有办法验证。

3、实时监控不足:等保一体机一般采用定时检测的方法进行监控,不能实现实时监控,有时会出现监控盲区。

4、所有的安全防护均需要通过各个安全网元来实现,而安全网元天然的低处理性能,决定了现有的等保一体机无法承接防火墙的工作(全流量访问控制),导致部署模式受限、建设成本加大。

注: 等保一体机当防火墙串联使用,真不知道哪个智障实施的,本来就是不是专业的防火墙设备,还跑着多个安全网元,消耗性能不是一般的大,会影响到防火墙的性能、网络的延迟等,建议等保一体机旁路引流部署。

5、硬件安全故障的风险:会使得整个网络的安全防护能力直接降到0,如果硬件设备无法维修,所有的安全网元都无法使用,就是一坏就是全部换新的。如果在维保的期间,有硬件备件维护还好,如果没有,就直接心碎。摆烂

等保一体机使用场景(个人理解,共大家研究)

等保二级规划
手工画一个(懒得画Visio了)
**注:**成本未知,那个大佬评论一下
在这里插入图片描述

相关文章:

网络安全设备-等保一体机

本文为作者学习文章,按作者习惯写成,如有错误或需要追加内容请留言(不喜勿喷) 本文为追加文章,后期慢慢追加 等保一体机的功能 等保一体机产品主要依赖于其丰富的安全网元(安全网元包括:防火…...

Kafka的配置和使用

目录 1.服务器用docker安装kafka 2.springboot集成kafka实现生产者和消费者 1.服务器用docker安装kafka ①、安装docker(docker类似于linux的软件商店,下载所有应用都能从docker去下载) a、自动安装 curl -fsSL https://get.docker.com | b…...

【C++】unordered_map在Windows和Linux上的不同行为

我目前手头上的项目,需要编译在板端Linux上运行,但是日常daily调试多在Windows上开发。这就涉及到同一份代码在多平台上的编译个运行。有一次遇到了一个奇怪的现象:跑同样的一份代码,Windows和Linux出来的结果是不一致的。最终确定…...

Apipost三方消息通知,接口变更不用愁

Apipost致力于为开发者提供更全面的API管理功能。而最近,Apipost又新增了一个非常实用的功能:第三方消息推送。这个功能可以帮助开发人员及时了解API的变更情况,从而更好地管理和优化自己的API。 具体来说,Apipost的第三方消息推…...

C语言 用数组名作函数参数

当用数组名作函数参数时,如果形参数组中各元素的值发生变化,实参数组元素的值随之变化。 1.数组元素做实参的情况: 如果已经定义一个函数,其原型为 void swap(int x,int y);假设函数的作用是将两个形参(x,y&#xf…...

每日一题(980. 不同路径 III)-回溯

题目 980. 不同路径 III 题解思路 表格中值为1的为起始点值为0 的是可以经过的点,但是只能经过一次值为2 的是终点,计算从起点到终点一共有多少种路径 计算出值为0的方格个数,同时找到起点位置当位于终点时候且经过所有的方格为0的点 即为…...

【Python:json常用函数,用于加载和保存json文件】load(), loads(), dump(), dumps()

文章目录 1、load()2、loads()3、dump()4、dumps() json文件为javascript object Notation文件,属于轻量级的数据交换格式,可以用于存储和交换数据。json文件是由类似{ }的key-value映射组成。 1、load() 把json文件加载为Python的数据格式&#xff0c…...

Flink State 和 Fault Tolerance详解

有状态操作或者操作算子在处理DataStream的元素或者事件的时候需要存储计算的中间状态,这就使得状态在整个Flink的精细化计算中有着非常重要的地位: 记录数据从某一个过去时间点到当前时间的状态信息。以每分钟/小时/天汇总事件时,状态将保留…...

小红书2023“家生活”趋势白皮书

关于报告的所有内容,公众【营销人星球】获取下载查看 核心观点 近年来,年轻人与家的关系愈发紧密。 在小红书上,我们观察到了家居家装内容的蓬勃生长,3 年来相关内容的笔记规模增长了6倍,相关品类的搜索量增加的 3.…...

使用 LangChain 搭建基于 Amazon DynamoDB 的大语言模型应用

LangChain 是一个旨在简化使用大型语言模型创建应用程序的框架。作为语言模型集成框架,在这个应用场景中,LangChain 将与 Amazon DynamoDB 紧密结合,构建一个完整的基于大语言模型的聊天应用。 本次活动,我们特意邀请了亚马逊云科…...

210. 课程表 II Python

文章目录 一、题目描述示例 1示例 2示例 3 二、代码三、解题思路 一、题目描述 现在你总共有 numCourses 门课需要选,记为 0 到 numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] [ai, bi] ,表示在选修课程 ai 前 必须 …...

【LeetCode 算法】Linked List Cycle II 环形链表 II

文章目录 Linked List Cycle II 环形链表 II问题描述:分析代码哈希快慢指针 Tag Linked List Cycle II 环形链表 II 问题描述: 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链…...

蒸散发与植被总初级生产力估算

目标 熟悉蒸散发ET及其组分(植被蒸腾Ec、土壤蒸发Es、冠层截留Ei)、植被总初级生产力GPP的概念和碳水耦合的基本原理;掌握利用Python与ArcGIS工具进行课程相关的操作;熟练掌握国际上流行的Penman-Monteith模型,并能够…...

uniapp微信小程序底部弹窗自定义组件

基础弹窗效果组件 <template><view><viewclass"tui-actionsheet-class tui-actionsheet":class"[show ? tui-actionsheet-show : ]"><view class"regional-selection">底部弹窗</view></view><!-- 遮罩…...

人工智能的最新进展:2024年将会发生什么?

文章目录 2024年AI最新发展2024年AI具体应用2024年AI的具体预测 ✍创作者&#xff1a;全栈弄潮儿 &#x1f3e1; 个人主页&#xff1a; 全栈弄潮儿的个人主页 &#x1f3d9;️ 个人社区&#xff0c;欢迎你的加入&#xff1a;全栈弄潮儿的个人社区 &#x1f4d9; 专栏地址&#…...

使用Golang实现一套流程可配置,适用于广告、推荐系统的业务性框架——组合应用

在《使用Golang实现一套流程可配置&#xff0c;适用于广告、推荐系统的业务性框架——简单应用》中&#xff0c;我们看到了各种组合Handler的组件&#xff0c;如HandlerGroup和Layer。这些组件下面的子模块又是不同组件&#xff0c;比如LayerCenter的子组件是Layer。如果此时我…...

DNS入门学习:DNS缓存的原理和作用(中科三方)

在实际业务场景中&#xff0c;DNS解析过程并不总是严格遵循从根域名服务器、顶级域名服务器再到权威域名服务器的一级级查询过程&#xff0c;这只是一个标准状态。为了节省全球查询的时间&#xff0c;同时减轻各级服务器的解析压力&#xff0c;DNS系统中引入了缓存机制。本文中…...

Linux虚拟机安装tomcat(图文详解)

目录 第一章、xshell工具和xftp的使用1.1&#xff09;xshell下载与安装1.2&#xff09;xshell连接1.3&#xff09;xftp下载安装和连接 第二章、安装tomcat1.1&#xff09;关闭防火墙&#xff0c;传输tomcat压缩包到Linux虚拟机12&#xff09;启动tomcat 第一章、xshell工具和xf…...

Matlab对TMS320F28335编程--SVPWM配置互补PWM输出

前言 F28335中断 目的&#xff1a;FOC的核心算法及SVPWM输出&#xff0c;SVPWM的载波频率10kHz&#xff0c;SVPWM的每个周期都会触发ADC中断采集相电流&#xff0c;SVPWM为芯片ePWM4、5、6通道&#xff0c;配置死区 1、配置中断SVPWM进ADC中断&#xff0c;查上表知CPU1,PIE1 …...

MySQL数据库——多表操作

文章目录 前言多表关系一对一关系一对多/多对一关系多对多关系 外键约束创建外键约束插入数据删除带有外键约束的表的数据删除外键约束 多表联合查询数据准备交叉连接查询内连接查询外连接查询左外连接查询右外连接查询满外连接查询 子查询子查询关键字ALL 关键字ANY 和 SOME 关…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...