2023牛客暑期多校训练营6-A Tree
2023牛客暑期多校训练营6-A Tree
https://ac.nowcoder.com/acm/contest/57360/A
文章目录
- 2023牛客暑期多校训练营6-A Tree
- 题意
- 解题思路
- 代码
题意
解题思路
最大价值和这个数据范围,一眼 d p dp dp。
直接在树上并不好处理,问题是如何有效转化、处理 x , y x,y x,y之间的最短路径上的最大边权值。这里用到了 k r u s k a l 重构树 kruskal重构树 kruskal重构树, k r u s k a l 算法 kruskal算法 kruskal算法是一种贪心地求最小生成树的算法,本题所用算法参照了该算法的思路,将一张无向图的边按边权排序,一次取用,不同的是,我们将每条边转化为带有点权的虚点,任意两点由虚点连接,而原图上的点均为叶子结点,如图:
一条边的两个端点将祖先连在一起,可以用并查集实现。
根据这种树的特殊性质,其虚点的权值自上而下减少,原图上两个点之间的最短路径上的最大权值即为该图上两点最近公共祖先的点权。此时可以进行树形 d p dp dp了!
设 d p x , b dp_{x,b} dpx,b表示以 x x x为根的字数内黑点个数为 b b b的贡献最大值,对于原图上任意边,其贡献值为
( W 1 × B 2 + W 2 × B 1 ) × k (W_1\times B_2+W_2\times B_1)\times k (W1×B2+W2×B1)×k,推理得:
d p x , b = M a x b − s z r ≤ b 1 ≤ m i n ( b , s z l ) ( d p l , b 1 + d p r , b − b 1 + k x × ( b 1 ( 左子树黑点个数 ) × ( s z r − b + b 1 ) ( 右子树白点个数 ) + ( s z l − b 1 ) ( 左子树白点个数 ) × ( b − b 1 ) ( 右子树黑点个数 ) ) ) dp_{x,b}=Max_{b-sz_r\le b_1\le min(b,sz_l)}(dp_{l,b_1}+dp_{r,b-b_1}+\\ k_x\times(b_1(左子树黑点个数)\times(sz_r-b+b_1)(右子树白点个数)+\\ (sz_l-b_1)(左子树白点个数)\times(b-b_1)(右子树黑点个数))) dpx,b=Maxb−szr≤b1≤min(b,szl)(dpl,b1+dpr,b−b1+kx×(b1(左子树黑点个数)×(szr−b+b1)(右子树白点个数)+(szl−b1)(左子树白点个数)×(b−b1)(右子树黑点个数)))
对于叶子结点 l e a f leaf leaf:
d p l e a f , a [ l e a f ] ⊕ 1 = − c o s t l e a f d p l e a f , a [ l e a f ] = 0 dp_{leaf,a[leaf]\oplus 1}=-cost_{leaf}\\ dp_{leaf,a[leaf]}=0 dpleaf,a[leaf]⊕1=−costleafdpleaf,a[leaf]=0
注意内存与结果大小, d p dp dp数组可以用 v e c t o r < l o n g l o n g > vector<long long> vector<longlong>。
代码
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
using namespace std;
const int N=6005;
int n,a[N],c[N],f[N],m,sz[N],b[N];
pair<int,int>e[N];
struct node{int u,v,w;
}p[N];
vector<ll> dp[N];
bool cmp(node a,node b){return a.w<b.w;
}
int sf(int x){if(f[x]==x)return x;return f[x]=sf(f[x]);
}
void dfs(int u){if(u<=n){dp[u][a[u]^1]=-c[u];dp[u][a[u]]=0;sz[u]=1;return;}int l=e[u].first,r=e[u].second;dfs(l),dfs(r);sz[u]=sz[l]+sz[r];dp[u]=vector<ll>(sz[u]+1,-0x3f3f3f3f3f3f);if(sz[l]>sz[r])swap(l,r);for(int x=0;x<=sz[u];x++)for(int i=max(0,x-sz[r]);i<=min(sz[l],x);i++){dp[u][x]=max(dp[u][x],dp[l][i]+dp[r][x-i]+b[u]*(i*(sz[r]-x+i)+(sz[l]-i)*(x-i)));}
}
int main(){cin>>n;for(int i=1;i<=n;i++)cin>>a[i],dp[i].resize(2);for(int i=1;i<=2*n;i++)f[i]=i;for(int i=1;i<=n;i++)cin>>c[i];for(int i=1;i<n;i++){int u,v,w;cin>>u>>v>>w;p[i].u=u,p[i].v=v,p[i].w=w;}sort(p+1,p+n,cmp);m=n;for(int i=1;i<n;i++){int u=p[i].u,v=p[i].v,w=p[i].w;if(sf(u)==sf(v))continue;++m;b[m]=w;e[m].first=sf(u),e[m].second=sf(v);f[sf(u)]=f[sf(v)]=m;}dfs(sf(1));ll ans=0;for(int i=0;i<=n;i++){ans=max(ans,dp[sf(1)][i]);}cout<<ans;
}
相关文章:

2023牛客暑期多校训练营6-A Tree
2023牛客暑期多校训练营6-A Tree https://ac.nowcoder.com/acm/contest/57360/A 文章目录 2023牛客暑期多校训练营6-A Tree题意解题思路代码 题意 解题思路 最大价值和这个数据范围,一眼 d p dp dp。 直接在树上并不好处理,问题是如何有效转化、处理…...
Vc - Qt - QPainter::SmoothPixmapTransform及QPainter::Antialiasing
QPainter::SmoothPixmapTransform是一个标志,用于指定绘制操作中的平滑像素变换行为。当使用QPainter绘制一幅图像时,设置SmoothPixmapTransform标志可以使图像变换过程更加平滑,减少锯齿状边缘的出现。此标志通常用于绘制缩放后图像的情况。…...
【练习】条件变量:创建三个线程 id号为ABC,三个线程循环打印自己的ID号,运行顺序为 ABCABC
题目: 创建三个线程 id号为ABC,三个线程循环打印自己的ID号,运行顺序为 ABCABC......要求使用条件变量 #include <stdio.h> #include <pthread.h> #include <unistd.h>//创建互斥锁 pthread_mutex_t mutex PTHREAD_MUTE…...

SpringBoot项目修改中静态资源,只需刷新页面无需重启项目(附赠—热加载)
初衷 💢初衷💢 因为一遍遍修改并重启项目觉得很麻烦,所以刚开始就自己给项目配置了热加载,但奈何代码更新还是慢,还不如我重启一遍项目的速度,所以放弃了自己上网找到的热加载配置。直到我debugger前端代码…...
clear_data_code_2d_model
dev update off () dev close window () ImageFiles:-./二维条码/read_image(Image,ImageFiles 十二维条码原图.png)dev_open_window_fit_image(Image,0,0,-,-1,WindowHandle)set_display_font (WindowHan…...
“深入剖析JVM:揭秘Java虚拟机的工作原理“
标题:深入剖析JVM:揭秘Java虚拟机的工作原理 摘要:本文将深入探讨Java虚拟机(JVM)的工作原理,包括JVM的架构、内存管理、垃圾回收、即时编译等关键技术。通过对JVM的剖析,我们可以更好地理解Ja…...
elementui表格table中实现内容的换行
问题 elementui 中的 table 行内的内容不能进行换行。 解决方法 思路: 利用 作用域插槽 结合 v-html,通过作用域插槽传递内容到表格行内,再通过 v-html 进行内容的替换。 代码: <el-table:data"tableData"stri…...
java 框架
目录 Spring 如何解决 bean 的循环依赖?什么是 AOP?Spring 如何实现的?BeanFactory 和 ApplicationContext 有什么区别?介绍一下 Spring bean 的生命周期Spring 的隔离级别Spring 框架用到了哪些设计模式?并举出典型例子Spring 如何解决 bean 的循环依赖? Spring中引入三…...

死锁的发生原因和怎么避免
项目场景: 提示:这里简述项目相关背景: 例如:项目场景:示例:通过蓝牙芯片(HC-05)与手机 APP 通信,每隔 5s 传输一批传感器数据(不是很大) 问题描述 死锁,简单来说就是两个或者两个以上的线程在…...

visual studio 生成dll文件以及修改输出dll文件名称操作
目录 visual studio 生成dll文件以及修改dll文件名称一、准备测试代码二、设置导出dll属性三、生成dll文件 .lib .dll .pdb 的简单介绍dll文件使用方式lib文件使用方式1、动态链接 (原理)2、静态链接: visual studio 生成dll文件以及修改dll文…...

【Leetcode】73.矩阵置零
一、题目 1、题目描述 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例1: 输入:matrix = [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例2: 输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1…...

zabbix监控mysql容器主从同步状态并告警钉钉/企业微信
前言:被监控的主机已经安装和配置mysql主从同步,和zabbix-agent插件。 mysql创建主从同步:http://t.csdn.cn/P4MYq centos安装zabbix-agent2:http://t.csdn.cn/fx74i mysql主从同步,主要监控这2个参数指标…...

ARM 常见汇编指令学习 9 - 缓存管理指令 DC 与 IC
文章目录 ARM64 DC 与 IC 指令 上篇文章:ARM 常见汇编指令学习 8 - dsb sy 指令及 dsb 参数介绍 ARM64 DC 与 IC 指令 AArch64指令集中有两条关于缓存维护(cache maintenance)的指令,分别是IC和DC。 IC 是用于指令缓存操作&…...

落地数字化管理,提升企业市场竞争力
数字化企业管理方案是一种利用数字技术和信息系统来提升企业管理效率和运营效果的策略。 潜在的数字化企业管理方案 1、企业资源规划(ERP)系统:建立一个集成的ERP系统来统一管理企业的各项业务流程,包括采购、销售、库存管理、财…...

2023华数杯数学建模竞赛C题思路解析
如下为:2023华数杯数学建模竞赛C题 母亲身心健康对婴儿成长的影响 的思路解析 C题 母亲身心健康对婴儿成长的影响 母亲是婴儿生命中最重要的人之一,她不仅为婴儿提供营养物质和身体保护,还为婴儿提供情感支持和安全感。母亲心理健康状态的不…...
Photon之如何解决Photon Server无法在局域网使用的bug
前言 先介绍一下Photon的两个服务器服务: Photon Cloud 是一个完全托管的软件即服务 (SaaS) 解决方案。我们可以完全专注于应用程序客户端,而托管、服务器操作和扩展均由光子官方负责。 Photon Server 是一个本地服务器应用程序,我们可以在本地或指定的计算机上运行和托管。…...

Redis两种持久化方案RDB持久化和AOF持久化
Redis持久化 Redis有两种持久化方案: RDB持久化AOF持久化 1.1.RDB持久化 RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启…...

银河麒麟v10 vnc环境配置
方法一、启用自带远程桌面 银河麒麟默认已经自带远程桌面,如下图。此时即可用Realvnc Viewer访问该终端,仔细查看后自带的远程桌面是开源组件gnome-remote-desktopGNOME / gnome-remote-desktop GitLabhttps://gitlab.gnome.org/GNOME/gnome-remote-de…...

【动态内存管理助力程序优化与性能飞升】
本章重点 为什么存在动态内存分配 动态内存函数的介绍 malloc free calloc realloc 常见的动态内存错误 几个经典的笔试题 柔性数组 1. 为什么存在动态内存分配 我们已经掌握的内存开辟方式有: int val 20;//在栈空间上开辟四个字节 char arr[10] {0};//在栈…...

电动汽车设计、制造、研发的学科、技术和前沿科技综述
引言:电动汽车作为替代传统燃油汽车的一种先进交通工具,不仅具有环保、低噪音等优势,而且对于能源消耗和气候变化等全球性问题也具有重要意义。本文将综述与电动汽车设计、制造、研发相关的学科、技术和前沿科技,以期对电动汽车领…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...