当前位置: 首页 > news >正文

机器学习入门之 pandas

pandas 有三种数据结构

一种是 Series

一种是 Dataframe

import  pandas as  pd
import  numpy as  np
score = np.random.randint(0,100,[10,5])score[0,0] = 100Datascore = pd.DataFrame(score)subject = ["语文","数学","英语","物理","化学"]Datascore.columns = subjectstuName = {"同学"+ str(i) for i  in range(10)}Datascore.index = stuNameprint(Datascore)print(Datascore.shape)

使用  列表  做数据传入  可以更方便使用列表的下标更改数据

import  pandas as  pd
import  numpy as  np
import  matplotlib.pyplot as  plt
# 读取 csv的 文档
starbucks =    pd.read_csv('directory.csv')
# 按照 Country 进行分组聚合
count = starbucks.groupby(['Country']).count()
# 绘制直线图
count['Brand'].plot(kind = "bar",figsize=(20,8))
plt.show()

import  matplotlib.pyplot as plt
import pandas as pd
import numpy as  np
# 使得数据显示完全
pd.set_option('display.max_columns', 1000)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 1000)# 读取文件
MovieDate = pd.read_csv("IMDB-Movie-Data.csv")
# 取平均值  取平均值函数 mean()
meanData=MovieDate["Rating"].mean()
print(meanData)
# 获取导演的人数  使用获取标签  然后使用 unipue去掉重复值  然后获取到对应的数量
DirectorCount = MovieDate["Director"].unique().shape[0]
print(DirectorCount)
import  matplotlib.pyplot as plt
import pandas as pd
import numpy as  np
# 使得数据显示完全
pd.set_option('display.max_columns', 1000)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 1000)# 读取文件
MovieDate = pd.read_csv("IMDB-Movie-Data.csv")
# 取平均值  取平均值函数 mean()
meanData=MovieDate["Rating"].mean()# 获取导演的人数  使用获取标签  然后使用 unipue去掉重复值  然后获取到对应的数量
DirectorCount = MovieDate["Director"].unique().shape[0]# 获得 Rating  和 Values的分布
# 使用pandas的画图工具来画的话,无法精细的描绘图像,还是需要使用matplotlib
MovieDate["Rating"].plot(kind="hist")
# 创建画布
plt.figure(figsize=(20,8),dpi=100)
# 描绘直方图  添加数据就可以弹出图形
plt.hist(MovieDate["Rating"])
# 修改刻度
# 确定最大值  最小值   分组
Maxrate = MovieDate['Rating'].max()
Minrate = MovieDate['Rating'].min()
# linespace  np的一个函数  可以创建等差数列,这些数列均匀的分布在范围内  返回一维数组类型
# start end num-->分成的组数
xticks=np.linspace(Minrate,Maxrate,num=21)
# 只能填入
plt.xticks(xticks)
plt.show()

相关文章:

机器学习入门之 pandas

pandas 有三种数据结构 一种是 Series 一种是 Dataframe import pandas as pd import numpy as np score np.random.randint(0,100,[10,5])score[0,0] 100Datascore pd.DataFrame(score)subject ["语文","数学","英语","物理&quo…...

Django之JWT库与SimpleJWT库的使用

Django之JWT库与SimpleJWT库的使用 JWTJWT概述头部(header)载荷(payload)签名(signature) Django使用JWT说明jwt库的使用安装依赖库配置settings.py文件配置urls.py文件创建视图配置权限 SimpleJWT库的使用安装SimpleJWT库配置Django项目配置路由创建用户接口测试身份认证自定义…...

Jmeter远程服务模式运行时引用csv文件的路径配置

问题 在使用jmeter过程中,本机的内存等配置不足,启动较多的线程时,可以采用分布式运行。 在分布式运行的时候,jmeter会自动将脚本从master主机发送到remote主机上,所以不需要考虑将脚本拷贝到remote主机。但是jmeter…...

《OWASP代码审计》学习——注入漏洞审计

一、注入的概念 注入攻击允许恶意用户向应用程序添加或注入内容和命令,以修改其行为。这些类型的攻击是常见且广泛的,黑客很容易测试网站是否易受攻击,攻击者也很容易利用这些攻击。如今,它们在尚未更新的遗留应用程序中非常常见…...

Linux虚拟机中安装MySQL5.6.34

目录 第一章、xshell工具和xftp的使用1.1)xshell下载与安装1.2)xshell连接1.3)xftp下载安装和连接 第二章、安装MySQL5.6.34(不同版本安装方式不同)2.1)关闭防火墙,传输MySQL压缩包到Linux虚拟机2.2&#x…...

Django的FBV和CBV

Django的FBV和CBV 基于django开发项目时,对于视图可以使用 FBV 和 CBV 两种模式编写。 FBV,function base views,其实就是编写函数来处理业务请求。 from django.contrib import admin from django.urls import path from app01 import view…...

[每周一更]-(第57期):用Docker、Docker-compose部署一个完整的前后端go+vue分离项目

文章目录 1.参考项目2.技能点3.GO的Dockerfile配置后端的结构如图Dockerfile先手动docker调试服务是否可以启动报错 4.Vue的Dockerfile配置前端的结构如图nginx_docker.confDockerfile构建 5.docker-compose 整合前后端docker-compose.yml错误记录(1)ip端…...

springboot-mybatis的增删改查

目录 一、准备工作 二、常用配置 三、尝试 四、增删改查 1、增加 2、删除 3、修改 4、查询 五、XML的映射方法 一、准备工作 实施前的准备工作: 准备数据库表 创建一个新的springboot工程,选择引入对应的起步依赖(mybatis、mysql驱动…...

HTML5(H5)的前生今世

目录 概述HTML5与其他HTML的区别CSS3与其他CSS版本的区别总结 概述 HTML5是一种用于构建和呈现网页的最新标准。它是HTML(超文本标记语言)的第五个版本,于2014年由万维网联盟(W3C)正式推出。HTML5的前身可以追溯到互联…...

抽象工厂模式(Abstract Factory)

抽象工厂模式提供一个创建一组相关或相互依赖的对象的接口,而无须指定它们具体的类,每个子类可以生产一系列相关的产品。 The Abstract Factory Pattern is to provide an interface for creating families of related or dependent objects without s…...

Java 实现下载文件工具类

package com.liunian.utils;import lombok.SneakyThrows;import javax.servlet.ServletOutputStream; import javax.servlet.http.HttpServletResponse; import java.io.File; import java.io.FileInputStream;/*** ClassName DownloadFileUtils* Author liuyan 下载文件工具类…...

C# 12 预览版的新功能

作者:Kathleen Dollard 排版:Alan Wang Visual Studio 17.7 Preview 3 和 .NET 8 Preview 6 的发布推进了 C# 12的发展。此预览版包含的功能为将来的性能增强奠定了基础。现在,您能够在库中更方便的使用内联函数。此预览版首次推出了一项实验…...

34.利用matlab解 多变量多目标规划问题(matlab程序)

1.简述 学习目标:适合解 多变量多目标规划问题,例如 收益最大,风险最小 主要目标法,线性加权法,权值我们可以自己设定。 收益函数是 70*x(1)66*x(2) ; 风险函数是 0.02*x(1)^20.01*x(2)^20.04*(x…...

暑假刷题第18天--7/30

165. 小猫爬山 - AcWing题库(dfs) #include<iostream> #include<string> #include<bitset> #include<cstring> #include<algorithm> using namespace std; const int N18; bool vis[N]; int a[N],n,ans,sum[N],k; bool cmp(int x,int y){retur…...

通向架构师的道路之Apache整合Tomcat

一、先从J2EE工程的通用架构说起 这是一个通用的Web即B/S工程的架构&#xff0c;它由&#xff1a; Web Server App Server DB Server 三大部分组成&#xff0c;其中&#xff1a; Web Server 置于企业防火墙外&#xff0c;这个防火墙&#xff0c;大家可以认为是…...

如何消除“信息孤岛”对业务增长的威胁?

根据CMSWire的数据&#xff0c;员工平均每天要花36%的时间来查找和整合信息。但44%的情况下&#xff0c;他们找不到信息。这种时间和精力的浪费就是信息孤岛造成的。 什么是信息孤岛&#xff1f; 当部门存储数据并限制其他人访问数据时&#xff0c;就会出现信息孤岛&#xff…...

Kali部署dvwa和pikachu靶场

kali换源 进入 vim /etc/apt/sources.list deb https://mirrors.aliyun.com/kali kali-rolling main non-free contrib deb-src https://mirrors.aliyun.com/kali kali-rolling main non-free contrib替换完后更新源 apt-get upadteDVWA靶场环境搭建 使用git从github上把DV…...

​LeetCode解法汇总722. 删除注释

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣 描述&#xff1a; 给一个 C 程序&#xff0c;删除程序中的注释。这个程序source是一个数组&#x…...

Linux中的firewall-cmd

2023年8月4日&#xff0c;周五上午 目录 打开端口关闭端口查看某个端口是否打开查看当前防火墙设置firewall-cmd中的服务在防火墙中什么是服务&#xff1f;为什么会有服务&#xff1f;打开或关闭服务查看某个服务是否打开firewall-cmd中的 zones查看所有可用的zones&#xff0…...

python 最大归一化

最大归一化是将数据转化到[-1,1]范围之间。公式如下 其中|X|max为x特征的绝对值的最大值。 数据标准化算法介绍—数据建模工具_预处理_Max_字段 """ 最大绝对值归一化&#xff08;max abs normalization &#xff09;&#xff1a;也就是将数值变为单位长度&…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...