当前位置: 首页 > news >正文

学习率Learn_rate是什么(深度学习)

学习率是指在训练神经网络时用于调整参数的步进大小,它决定了每次梯度更新时参数的调整程度。学习率的选择直接关系到模型的性能和训练过程的效果。

学习率变化可能带来的影响:

  1. 收敛速度:较高的学习率可以加快模型的收敛速度,因为参数更新更大,模型能够更快地找到损失函数的最小值。然而,如果学习率过高,可能导致训练过程不稳定或无法收敛。

  2. 精度和稳定性:合适的学习率可以提高模型的精度和稳定性。较低的学习率通常会使模型在训练期间更加稳定,但可能需要更多的迭代次数才能达到较好的性能。

  3. 局部最优解与全局最优解:学习率的选择也会对模型陷入局部最优解或者找到全局最优解产生影响。较高的学习率可能会导致模型跳过全局最优解并陷入局部最优解,而较低的学习率可能需要更多的迭代才能达到全局最优解。

  4. 鲁棒性:学习率的变化还可以增加模型的鲁棒性,使其对于训练数据中的噪声或异常值更加不敏感。

选择合适的学习率是深度学习中一个重要的超参数调整问题,需要通过实验和验证来找到最佳的学习率,以便在训练过程中获得最佳的模型性能。

相关文章:

学习率Learn_rate是什么(深度学习)

学习率是指在训练神经网络时用于调整参数的步进大小,它决定了每次梯度更新时参数的调整程度。学习率的选择直接关系到模型的性能和训练过程的效果。 学习率变化可能带来的影响: 收敛速度:较高的学习率可以加快模型的收敛速度,因为…...

webpack基础知识五:说说Loader和Plugin的区别?编写Loader,Plugin的思路?

一、区别 前面两节我们有提到Loader与Plugin对应的概念,先来回顾下 loader 是文件加载器,能够加载资源文件,并对这些文件进行一些处理,诸如编译、压缩等,最终一起打包到指定的文件中plugin 赋予了 webpack 各种灵活的…...

AI大模型之花,绽放在鸿蒙沃土

随着生成式AI日益火爆,大语言模型能力引发了越来越多对于智慧语音助手的期待。 我们相信,AI大模型能力加持下的智慧语音助手一定会很快落地,这个预判不仅来自对AI大模型的观察,更来自对鸿蒙的了解。鸿蒙一定会很快升级大模型能力&…...

[JAVAee]锁策略

目录 乐观锁与悲观锁 乐观锁 乐观锁的冲突检测 悲观锁 读锁与写锁 重量级锁与轻量级锁 重量级锁 轻量级锁 自旋锁 公平锁与非公平锁 可重入锁与不可重入锁 乐观锁与悲观锁 乐观锁 在乐观锁中,假设数据并不会发生冲突,在正式提交数据时会对数据进行冲突检测,如果发…...

uni-app-使用tkiTree组件实现树形结构选择

前言 在实际开发中我们经常遇见树结构-比如楼层区域-组织架构-部门岗位-系统类型等情况 往往需要把这个树结构当成条件来查询数据,在PC端可以使用Tree,table,Treeselect等组件展示 在uni-app的内置组件中似乎没有提供这样组件来展示&#x…...

SQL-每日一题【1179. 重新格式化部门表】

题目 部门表 Department: 编写一个 SQL 查询来重新格式化表,使得新的表中有一个部门 id 列和一些对应 每个月 的收入(revenue)列。 查询结果格式如下面的示例所示: 解题思路 1.题目要求我们重新格式化表,…...

GO语言语法结构

GO语言结构 包声明引入包函数变量语句 && 表达式注释 package main import "fmt" func main() {fmt.Println("Hello,World!") } 如这段代码块根据上面的语法结构进行逐行解释 第一行的 package main 是定义一个包名,必须在源文件…...

C++学习——模板

目录 🍉一:什么是模板 🍎二:普通模板的定义 🍍三:类模板的定义 🍌四:模板的实例化 🍇1.当普通模板定义存在可修改返回值产生的分歧 🍈2:类模板实例…...

二叉树的遍历(先序遍历,中序遍历,后序遍历)递归与非递归算法

目录 一、先序遍历题目链接1.递归2.非递归 二、中序遍历题目链接1.递归2.非递归 三、后序遍历题目链接1.递归2.非递归 一、先序遍历 先序遍历:先遍历一颗树的根节点,后遍历左子树,最后遍历右子树 先序遍历序列: 1 -> 2 -> 4…...

【LeetCode】516. 最长回文子序列

文章目录 1. 思路讲解1.1 创建dp表1.2 状态转移方程1.3 不需考虑边界问题 2. 整体代码 1. 思路讲解 1.1 创建dp表 此题采用动态规划的方法,创建一个二维dp表,dp[i][j]表示s[i, j]中最大回文子序列的长度。且我们人为规定 i 是一定小于等于 j 的。 1.2…...

Java 集合框架

Java 集合框架提供了一组接口和类,以实现各种数据结构和算法。 集合框架满足以下几个要求。 该框架必须是高性能的。基本集合(动态数组,链表,树,哈希表)的实现也必须是高效的。 该框架允许不同类型的集合…...

遇到多人协作,我们该用git如何应对?(版本二)

一、多人协作二 1.1多人协作 一般情况下,如果有多需求需要多人同时进行开发,是不会在一个分支上进行多人开发,而是一个需求或一个功能点就要创建一个feature 分支。 现在同时有两个需求需要你和你的小伙伴进行开发,那么你们俩便…...

Flutter iOS 集成使用 fluter boost

在 Flutter项目中集成完 flutter boost,并且已经使用了 flutter boost进行了路由管理,这时如果需要和iOS混合开发,这时就要到 原生端进行集成。 注意:之前建的项目必须是 Flutter module项目,并且原生项目和flutter m…...

node.js相关的npm包的集合

一、实用功能 1. qs 一个简单易用的字符串解析和格式化库 2.rxjs RxJS是一组模块化的库,用于使用 JavaScript 中的可观察集合和组合来组合异步和基于事件的程序。 3. mitt 微型 200b 功能事件发射器/发布订阅. 4.Underscore.js Underscore.js是一个用于 JavaScript…...

Android Ble蓝牙App(二)连接与发现服务

Ble蓝牙App(二)连接与发现服务 前言正文一、GATT回调二、连接和断连三、连接状态回调四、发现服务五、服务适配器六、显示服务七、源码 前言 在上一篇中我们进行扫描设备的处理,本文中进行连接和发现服务的数据处理,运行效果图如下…...

Android 自定义按钮(可滑动、点击)

按钮图片素材 https://download.csdn.net/download/Lan_Se_Tian_Ma/88151085 px 和 dp 转换工具类(Java) // px 和 dp 转换工具类 public class DensityUtil {/*** 根据手机的分辨率从 dip 的单位 转成为 px(像素)*/public static int dip2px(Conte…...

mac录屏怎么打开?很简单,让我来教你!

mac电脑作为一款广受欢迎的电脑系统,提供了多种方式来满足用户录屏的需求。无论您是要录制教学视频、制作演示文稿,还是记录游戏精彩瞬间,mac电脑都能帮助您实现这些目标。本文将为您介绍两种mac录屏的方法。通过本文的指导,您将能…...

Stable Diffusion AI绘画学习指南【插件安装设置】

插件安装的方式 可用列表方式安装,点开Extensions 选项卡,找到如下图,找到Available选项卡,点load from加载可用插件,在可用插件列表中找到要装的插件按install 按扭按装,安装完后(Apply and restart UI)应…...

APP开发中的性能优化:提升用户满意度的关键

APP开发中的性能优化是需要持续进行的,它不仅能够让用户体验到 APP的使用感受,还能在一定程度上提升用户的满意度,从而提升 APP的粘性和转化率。不过在实际开发中,很多 APP开发公司会存在性能优化上的问题,这就需要了解…...

Golang 切片 常用方法

文章目录 移除指定位置的元素查找元素的位置查找最大最小的元素去重随机打乱排序二维排序sort.Sort 排序 下面的方法省略一些校验,如数组越界等,且都采用泛型(要求go版本 > 1.18) 移除指定位置的元素 package mainimport ("fmt" )func Del…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言: 类加载器 1. …...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...