当前位置: 首页 > news >正文

二叉树的遍历(先序遍历,中序遍历,后序遍历)递归与非递归算法

一、先序遍历

先序遍历:先遍历一颗树的根节点,后遍历左子树,最后遍历右子树


在这里插入图片描述

先序遍历序列: 1 -> 2 -> 4 -> 5 -> 3 -> 6 -> 7

题目链接

1.递归

分解子问题方法

class Solution {
public:void preOrder(TreeNode* root,vector<int>& str){if(root==NULL)return;str.push_back(root->val);preOrder(root->left,str);preOrder(root->right,str);}vector<int> preorderTraversal(TreeNode* root) {vector<int> str;preOrder(root,str);return str;}
};

在这里插入图片描述

2.非递归

思路:将一颗二叉树看做两个部分,一个部分是左路节点,另一个部分是左路节点的右子树,先将二叉树的左路节点全部入栈,再依次出栈,出栈的过程中将这个节点的右子树按相同方法将左路节点全部入栈,然后依次出栈,出栈的方法与上面相同,模拟递归调用的方法实现非递归,此时的入栈顺序就是先序遍历序列
在这里插入图片描述
在这里插入图片描述

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur=root;vector<int> v;while(cur||!st.empty()){//访问一棵树的开始//  1、访问左路节点,左路节点入栈,后续一次访问左路节点的右子树while(cur){v.push_back(cur->val);st.push(cur);cur=cur->left;}//一次访问左路节点的右子树TreeNode* top=st.top();st.pop();//子问题的方式访问右子树cur=top->right;}return v;}
};

二、中序遍历

题目链接

中序遍历:先遍历一颗树的左子树,然后遍历根节点,最后遍历右子树
在这里插入图片描述

中序遍历序列:4 -> 2 -> 5 -> 1 -> 6 -> 3 -> 7

1.递归

递归调用分解子问题,与前序遍历递归思路相同

class Solution {
public:void inorder(TreeNode* root,vector<int>& res){if(root==NULL)return;inorder(root->left,res);res.push_back(root->val);inorder(root->right,res);}vector<int> inorderTraversal(TreeNode* root) {vector<int> res;inorder(root,res);return res;}
};

2.非递归

与前序遍历相似,前序遍历是在入栈的顺序为前序遍历序列,而中序遍历则是出栈的顺序则为中序遍历序列
在这里插入图片描述
在这里插入图片描述

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur=root;vector<int> v;while(cur||!st.empty()){//访问一棵树的开始//  1、访问左路节点,左路节点入栈,后续一次访问左路节点的右子树while(cur){st.push(cur);cur=cur->left;}//一次访问左路节点的右子树TreeNode* top=st.top();st.pop();v.push_back(top->val);//子问题的方式访问右子树cur=top->right;}return v;}
};

三、后序遍历

后序遍历:先遍历一颗树的左子树,然后遍历右子树,最后遍历根节点
在这里插入图片描述

后续遍历序列:4 -> 5 -> 2 -> 6 -> 7 -> 3 -> 1

题目链接

1.递归

分解子问题

class Solution {
public:void postOrder(TreeNode* root,vector<int>& ret){if(root==NULL)return;postOrder(root->left,ret);postOrder(root->right,ret);ret.push_back(root->val);}vector<int> postorderTraversal(TreeNode* root) {vector<int> ret;postOrder(root,ret);return ret;}
};

2.非递归

后续遍历的非递归要比前序和中序遍历的非递归复杂一点,我们要在前面前序遍历和中序遍历非递归的算法上进行一些改进,创建一个变量prev,用来记录访问当前节点的上一个节点,如果当前左路节点的右子树为空或者已经访问过右子树就需将当前接节点出栈,此时的出栈顺序即为后续遍历序列。
在这里插入图片描述
在这里插入图片描述

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur=root;TreeNode* prev=NULL;vector<int> v;while(cur||!st.empty()){//访问一棵树的开始//  1、访问左路节点,左路节点入栈,后续一次访问左路节点的右子树while(cur){st.push(cur);cur=cur->left;}TreeNode* top=st.top();//一个节点右子树为空或者上一个访问节点是右子树的根,说明右子树访问过滤,可以访问根节点了if(top->right==nullptr||top->right==prev){prev=top;v.push_back(top->val);st.pop();}else cur=top->right;}return v;}
};

相关文章:

二叉树的遍历(先序遍历,中序遍历,后序遍历)递归与非递归算法

目录 一、先序遍历题目链接1.递归2.非递归 二、中序遍历题目链接1.递归2.非递归 三、后序遍历题目链接1.递归2.非递归 一、先序遍历 先序遍历&#xff1a;先遍历一颗树的根节点&#xff0c;后遍历左子树&#xff0c;最后遍历右子树 先序遍历序列&#xff1a; 1 -> 2 -> 4…...

【LeetCode】516. 最长回文子序列

文章目录 1. 思路讲解1.1 创建dp表1.2 状态转移方程1.3 不需考虑边界问题 2. 整体代码 1. 思路讲解 1.1 创建dp表 此题采用动态规划的方法&#xff0c;创建一个二维dp表&#xff0c;dp[i][j]表示s[i, j]中最大回文子序列的长度。且我们人为规定 i 是一定小于等于 j 的。 1.2…...

Java 集合框架

Java 集合框架提供了一组接口和类&#xff0c;以实现各种数据结构和算法。 集合框架满足以下几个要求。 该框架必须是高性能的。基本集合&#xff08;动态数组&#xff0c;链表&#xff0c;树&#xff0c;哈希表&#xff09;的实现也必须是高效的。 该框架允许不同类型的集合…...

遇到多人协作,我们该用git如何应对?(版本二)

一、多人协作二 1.1多人协作 一般情况下&#xff0c;如果有多需求需要多人同时进行开发&#xff0c;是不会在一个分支上进行多人开发&#xff0c;而是一个需求或一个功能点就要创建一个feature 分支。 现在同时有两个需求需要你和你的小伙伴进行开发&#xff0c;那么你们俩便…...

Flutter iOS 集成使用 fluter boost

在 Flutter项目中集成完 flutter boost&#xff0c;并且已经使用了 flutter boost进行了路由管理&#xff0c;这时如果需要和iOS混合开发&#xff0c;这时就要到 原生端进行集成。 注意&#xff1a;之前建的项目必须是 Flutter module项目&#xff0c;并且原生项目和flutter m…...

node.js相关的npm包的集合

一、实用功能 1. qs 一个简单易用的字符串解析和格式化库 2.rxjs RxJS是一组模块化的库&#xff0c;用于使用 JavaScript 中的可观察集合和组合来组合异步和基于事件的程序。 3. mitt 微型 200b 功能事件发射器/发布订阅. 4.Underscore.js Underscore.js是一个用于 JavaScript…...

Android Ble蓝牙App(二)连接与发现服务

Ble蓝牙App&#xff08;二&#xff09;连接与发现服务 前言正文一、GATT回调二、连接和断连三、连接状态回调四、发现服务五、服务适配器六、显示服务七、源码 前言 在上一篇中我们进行扫描设备的处理&#xff0c;本文中进行连接和发现服务的数据处理&#xff0c;运行效果图如下…...

Android 自定义按钮(可滑动、点击)

按钮图片素材 https://download.csdn.net/download/Lan_Se_Tian_Ma/88151085 px 和 dp 转换工具类&#xff08;Java&#xff09; // px 和 dp 转换工具类 public class DensityUtil {/*** 根据手机的分辨率从 dip 的单位 转成为 px(像素)*/public static int dip2px(Conte…...

mac录屏怎么打开?很简单,让我来教你!

mac电脑作为一款广受欢迎的电脑系统&#xff0c;提供了多种方式来满足用户录屏的需求。无论您是要录制教学视频、制作演示文稿&#xff0c;还是记录游戏精彩瞬间&#xff0c;mac电脑都能帮助您实现这些目标。本文将为您介绍两种mac录屏的方法。通过本文的指导&#xff0c;您将能…...

Stable Diffusion AI绘画学习指南【插件安装设置】

插件安装的方式 可用列表方式安装&#xff0c;点开Extensions 选项卡&#xff0c;找到如下图&#xff0c;找到Available选项卡&#xff0c;点load from加载可用插件&#xff0c;在可用插件列表中找到要装的插件按install 按扭按装&#xff0c;安装完后(Apply and restart UI)应…...

APP开发中的性能优化:提升用户满意度的关键

APP开发中的性能优化是需要持续进行的&#xff0c;它不仅能够让用户体验到 APP的使用感受&#xff0c;还能在一定程度上提升用户的满意度&#xff0c;从而提升 APP的粘性和转化率。不过在实际开发中&#xff0c;很多 APP开发公司会存在性能优化上的问题&#xff0c;这就需要了解…...

Golang 切片 常用方法

文章目录 移除指定位置的元素查找元素的位置查找最大最小的元素去重随机打乱排序二维排序sort.Sort 排序 下面的方法省略一些校验&#xff0c;如数组越界等&#xff0c;且都采用泛型(要求go版本 > 1.18) 移除指定位置的元素 package mainimport ("fmt" )func Del…...

【Linux后端服务器开发】poll/epoll多路转接IO服务器

目录 一、poll原理 二、poll实现多路转接IO服务器 三、epoll函数接口 四、epoll的工作原理 五、epoll实现多路转接IO服务器 一、poll原理 poll函数接口 #include <poll.h> int poll(struct pollfd *fds, nfds_t nfds, int timeout);// pollfd结构 struct pollfd …...

【设计模式——学习笔记】23种设计模式——命令模式Command(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入介绍基础介绍登场角色 案例实现案例一实现 案例二介绍实现拓展 命令模式在JdbcTemplate源码中的应用总结文章说明 案例引入 有一套智能家电&#xff0c;其中有照明灯、风扇、冰箱、洗衣机&#xff0c;这些智能家电来自不同的厂家&#xff0c;我们不想针对每一…...

Rust中的高吞吐量流处理

本篇文章主要介绍了Rust中流处理的概念、方法和优化。作者不仅介绍了流处理的基本概念以及Rust中常用的流处理库&#xff0c;还使用这些库实现了一个流处理程序。 最后&#xff0c;作者介绍了如何通过测量空闲和阻塞时间来优化流处理程序的性能&#xff0c;并将这些内容同步至…...

探索编程世界的宝藏:程序员必掌握的20大算法

文章目录 1 引言2 冒泡排序算法&#xff1a;编程世界的排序魔法 &#x1f9d9;‍♀️&#x1f522;3 选择排序算法&#xff1a;排序世界的精确挑选器 &#x1f3af;&#x1f522;4 插入排序算法&#xff1a;排序世界的巧妙插珠者 ✨&#x1f522;5 快速排序算法&#xff1a;排序…...

Android NFC通信示例

前言 近距离无线通信 (NFC) 是一组近距离无线技术&#xff0c;通常只有在距离不超过 4 厘米时才能启动连接。借助 NFC&#xff0c;您可以在 NFC 标签与 Android 设备之间或者两台 Android 设备之间共享小型负载。 支持 NFC 的 Android 设备同时支持以下三种主要操作模式&…...

2023年08月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年08月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…...

使用Beego和MySQL实现帖子和评论的应用,并进行接口测试(附源码和代码深度剖析)

文章目录 小项目介绍源码分析main.gorouter.gomodels/user.gomodels/Post.gomodels/comment.gocontrollers/post.gocontrollers/comment.go 接口测试测试增加帖子测试查看帖子测试增加评论测试查看评论 小项目介绍 经过对需求的分析&#xff0c;我增加了一些额外的东西&#x…...

物联网潜在的巨大价值在于大数据分析

物联网潜在的巨大价值在于大数据分析 从数据里去挖掘市场或者用户的精准需求。 往小的说&#xff0c;后台可以统计用户家里各各插座一年甚至更久的用电情况&#xff0c;这些数据也可以通过app或者小程序展现给用户。 用户可以很直观看到自己一年的用电情况&#xff0c;哪个家…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...