当前位置: 首页 > news >正文

opencv36-形态学操作-膨胀 cv2.dilate()

膨胀操作是形态学中另外一种基本的操作。膨胀操作和腐蚀操作的作用是相反的,膨胀操作能对图像的边界进行扩张。膨胀操作将与当前对象(前景)接触到的背景点合并到当前对象内,从而实现将图像的边界点向外扩张。如果图像内两个对象的距离较近,那么在膨胀的过程中,两个对象可能会连通在一起。膨胀操作对填补图像分割后图像内所存在的空白相当有帮助。

原理:

二值图像的膨胀示例如图 8-8 所示。

同腐蚀过程一样,在膨胀过程中,也是使用一个结构元来逐个像素地扫描要被膨胀的图像,并根据结构元和待膨胀图像的关系来确定膨胀结果。

在这里插入图片描述
例如,在图 8-9 中,整幅图像的背景色是黑色的,前景对象是一个白色的圆形。图像左上角的深色小块表示遍历图像所使用的结构元。在膨胀过程中,要将该结构元逐个像素地遍历整幅图像,并根据结构元与待膨胀图像的关系,来确定膨胀结果图像中与结构元中心点对应位置像素点的值。

在这里插入图片描述

图 8-10 中的两幅图像代表结构元与前景色的两种不同关系。根据这两种不同关系来决定
膨胀结果图像中,与结构元中心像素重合的点的像素值。

  1. 如果结构元中任意一点处于前景图像中,就将膨胀结果图像中对应像素点处理为前景色。
  2. 如果结构元完全处于背景图像外,就将膨胀结果图像中对应像素点处理为背景色。

在这里插入图片描述
针对图 8-10 中的图像,膨胀的结果就是前景对象的白色圆直径变大。上述结构元也被称为核。

例如,有待膨胀的图像 img,其值为:

[[0 0 0 0 0]
[0 0 0 0 0]
[0 1 1 1 0]
[0 0 0 0 0]
[0 0 0 0 0]]

有一个结构元 kernel,其值为:

[[1]
[1]
[1]]

如果使用结构元 kernel 对图像 img 进行膨胀,则可以得到膨胀结果图像 rst:

[[0 0 0 0 0]
[0 1 1 1 0]
[0 1 1 1 0]
[0 1 1 1 0]
[0 0 0 0 0]]

这是因为当结构元 kernel 在图像 img 内逐个像素地进行遍历时,当核 kernel 的中心点 kernel[1,0]位于 img 中的 img[1,1]、img[1,2]、img[1,3]、img[2,1]、img[2,2]、img[2,3]、img[3,1]、img[3,2]或 img[3,3]处时,核内像素点都存在与前景对象重合的像素点。所以,在膨胀结果图像中,这 9 个像素点的值被处理为 1,其余像素点的值被处理为 0。

上述示例的示意图如图 8-11 所示,其中:

  • 图(a)表示待膨胀的 img。

  • 图(b)是核 kernel。

  • 图©中的阴影部分是 kernel 在遍历 img 时,kernel 中心像素点位于 img[1,1]、img[3,3]
    时与前景色存在重合像素点的两种可能情况,实际上共有 9 个这样的与前景对象重合的可能位置。核 kernel 的中心分别位于 img[1,1]、img[1,2]、img[1,3]、img[2,1]、img[2,2]、
    img[2,3]、img[3,1]、img[3,2]或 img[3,3]时,核内像素点都存在与前景图像重合的像素点。

  • 图(d)是膨胀结果图像 rst。在 kernel 内,当任意一个像素点与前景对象重合时,其中心点所对应的膨胀结果图像内的像素点值的为 1;当 kernel 与前景对象完全无重合时,其中心点对应的膨胀结果图像内像素点的值为 0。

在这里插入图片描述

函数说明:

在 OpenCV 内,采用函数 cv2.dilate()实现对图像的膨胀操作,该函数的语法结构为:

dst = cv2.dilate( src, kernel[, anchor[, iterations[, borderType[,
borderValue]]]])

式中:

  • dst 代表膨胀后所输出的目标图像,该图像和原始图像具有同样的类型和大小。
  • src 代表需要进行膨胀操作的原始图像。图像的通道数可以是任意的,但是要求图像的深度必须是 CV_8U、CV_16U、CV_16S、CV_32F、CV_64F 中的一种。
  • element 代表膨胀操作所采用的结构类型。它可以自定义生成,也可以通过函数cv2.getStructuringElement()生成。
    参数 kernel、anchor、iterations、borderType、borderValue 与函数 cv2.erode()内相应参数的含义一致。

代码示例:使用数组演示膨胀的基本原理

import cv2
import numpy as np
img=np.zeros((5,5),np.uint8)
img[2:3,1:4]=1
kernel = np.ones((3,1),np.uint8)
#对图像进行膨胀操作
dilation = cv2.dilate(img,kernel)
print("img=\n",img)
print("kernel=\n",kernel)
print("dilation\n",dilation)

运行结果:

img=[[0 0 0 0 0][0 0 0 0 0][0 1 1 1 0][0 0 0 0 0][0 0 0 0 0]]
kernel=[[1][1][1]]
dilation[[0 0 0 0 0][0 1 1 1 0][0 1 1 1 0][0 1 1 1 0][0 0 0 0 0]]

从本例中可以看到,只要当核 kernel 的任意一点处于前景图像中时,就将当前中心点所对应的膨胀结果图像内像素点的值置为 1。

示例2:使用函数 cv2.dilate()完成图像膨胀操作。

在这里插入图片描述
代码如下;

import cv2
import numpy as np
o=cv2.imread("dilation.bmp",cv2.IMREAD_UNCHANGED)
kernel = np.ones((9,9),np.uint8)
dilation = cv2.dilate(o,kernel)
cv2.imshow("original",o)
cv2.imshow("dilation",dilation)
cv2.waitKey()
cv2.destroyAllWindows()

在本例中,使用语句 kernel=np.ones((9,9),np.uint8)生成 9×9 的核,来对原始图像进行膨胀操作。

运行结果:

左图是原始图像,右图是膨胀处理结果。从图中可以看到,膨胀操作将原始图像“变粗”了。
在这里插入图片描述

示例3:调节函数 cv2.dilate()的参数,观察不同参数控制下的图像膨胀效果。

import cv2
import numpy as np
o=cv2.imread("dilation.bmp",cv2.IMREAD_UNCHANGED)
kernel = np.ones((5,5),np.uint8)
dilation = cv2.dilate(o,kernel,iterations = 9)
cv2.imshow("original",o)
cv2.imshow("dilation", dilation)
cv2.waitKey()
cv2.destroyAllWindows()

在本例中,参数做了两个调整:

  • 核的大小变为 5×5。
  • 使用语句 iterations = 9 对迭代次数进行控制,让膨胀重复 9 次。

运行结果:

在这里插入图片描述
左图是原始图像,右图是膨胀处理结果。从图中
可以看到,膨胀操作让原始图像实现了“生长”。在本例中,由于重复了 9 次,所以图像被膨胀得更严重了。

更多的操作自己多动手实验感受一下

相关文章:

opencv36-形态学操作-膨胀 cv2.dilate()

膨胀操作是形态学中另外一种基本的操作。膨胀操作和腐蚀操作的作用是相反的,膨胀操作能对图像的边界进行扩张。膨胀操作将与当前对象(前景)接触到的背景点合并到当前对象内,从而实现将图像的边界点向外扩张。如果图像内两个对象的…...

8266 ESP-07模块的使用 以及详细介绍

esp8266系列 陶瓷天线 版本 详细介绍说明 最近使用8266的ESP-01S做了个数据无线收发装置,发现板载天线信号太弱,装上外壳后信号更弱,因此考虑能否使用带有外接天线的模块代替ESP-01S。经过在安可信官网搜索发现,ESP07、ESP07S、ES…...

Linux之 centos、Ubuntu 安装常见程序 (-) Mysql 5.7 版本和8.0版本

CentOS 安装 MySql 注意 需要有root权限 安装5.7版本 – 由于MySql并不在CentOS的官方仓库中,所以需要通过rmp命令: 导入MySQL仓库密钥 1、配置MySQL的yum仓库 配置yum仓库 更新密钥 rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022 安装…...

【IDEA+Spark Streaming 3.4.1+Dstream监控套接字流统计WordCount保存至MySQL8】

【IDEASpark Streaming 3.4.1Dstream监控套接字流统计WordCount保存至MySQL8】 把DStream写入到MySQL数据库中 Spark 3.4.1MySQL 8.0.30sbt 1.9.2 文章目录 【IDEASpark Streaming 3.4.1Dstream监控套接字流统计WordCount保存至MySQL8】前言一、背景说明二、使用步骤1.引入库2…...

Dcat Admin 入门应用指南

在现代的网络应用开发中,管理后台是不可或缺的一部分。它为开发者提供了一个方便管理和监控应用数据的界面。而 Dcat Admin 是一个强大的管理后台框架,它基于 Laravel 框架开发,提供了丰富的功能和灵活的扩展性。本文将带您深入了解 Dcat Adm…...

计算机视觉:替换万物Inpaint Anything

目录 1 Inpaint Anything介绍 1.1 为什么我们需要Inpaint Anything 1.2 Inpaint Anything工作原理 1.3 Inpaint Anything的功能是什么 1.4 Segment Anything模型(SAM) 1.5 Inpaint Anything 1.5.1 移除任何物体 1.5.2 填充任意内容 1.5.3 替换任…...

AWS——01篇(AWS入门 以及 AWS之EC2实例及简单实用)

AWS——01篇(AWS入门 以及 AWS之EC2实例及简单实用) 1. 前言2. 创建AWS账户3. EC23.1 启动 EC2 新实例3.1.1 入口3.1.2 设置名称 选择服务3.1.3 创建密钥对3.1.4 网络设置——安全组3.1.4.1 初始设置3.1.4.2 添加安全组规则(开放新端口&…...

Clickhouse 优势与部署

一、clickhouse简介 1.1clickhouse介绍 ClickHouse的背后研发团队是俄罗斯的Yandex公司,2011年在纳斯达克上市,它的核心产品是搜索引擎。我们知道,做搜索引擎的公司营收非常依赖流量和在线广告,所以做搜索引擎的公司一般会并行推…...

全球数据泄露事件增加近三倍

网络安全公司 Surfshark 的最新研究显示,2023 年第二季度共有 1.108 亿个账户遭到泄露,其中美国排名第一,几乎占 4 月至 6 月所有泄露事件的一半。 俄罗斯排名第二,西班牙排名第三,其次是法国和土耳其。 与 2023 年…...

【雕爷学编程】 MicroPython动手做(38)——控制触摸屏2

MixPY——让爱(AI)触手可及 MixPY布局 主控芯片:K210(64位双核带硬件FPU和卷积加速器的 RISC-V CPU) 显示屏:LCD_2.8寸 320*240分辨率,支持电阻触摸 摄像头:OV2640,200W像素 扬声器&#…...

钉钉微应用

钉钉微应用 在做钉钉微应用开发的时候,遇到了一些相关性的问题,特此记录下,有遇到其他问题的,欢迎一起讨论 调试工具 当我们基于钉钉开发微应用时,难免会遇到调用钉钉api后的调试,这个时候可以安装eruda…...

【 SpringSecurity】第三方认证方法级别安全

文章目录 SpringSecurity 第三方认证实现方法级别的安全 SpringSecurity 第三方认证 在登录网页时,时常有用其他账号登录的方式,它们能够让用户避免在Web站点特定的登录页上自己输入凭证信息。这样的Web站点提供了一种通过其他网站(如Facebo…...

达梦数据库在windows上的安装

前言 简单记录达梦数据库DM7在windows10上的安装过程 1 下载并安装安装包 官网登录后才能下载,建议先注册账户。 下载地址:产品下载-达梦数据 ,CPU选择x86,操作系统选择win64即可。解压安装包后,一路安装下去即可。…...

新手Vite打包工具的使用并解决yarn create vite报错

一、手动创建 1.创建vite-Demo文件夹 2.初始化 yarn init -y 3.安装vite yarn add -D vite 4.打包准备 说明&#xff1a;不需要在src下面创建&#xff0c;在vite-Demo文件夹创建 4.1index.js文件 document.body.insertAdjacentHTML("beforeend","<h1>…...

SpringMVC框架——First Day

目录 三层架构 MVC模型 SpringMVC 快速入门案例 SpringMVC的概述&#xff08;了解&#xff09; SpringMVC在三层架构的位置 SpringMVC的优势&#xff08;了解&#xff09; 创建SpringMVC的Maven项目 1.在pom.xml中添加所需要的jar包 2.在工程的web.xml中配置核心Spring…...

基于C++雪花算法工具类Snowflake -来自chatGPT

#include <iostream> #include <chrono> #include <stdexcept>class Snowflake { private:// 雪花算法的各个参数static constexpr int64_t workerIdBits 5;static constexpr int64_t datacenterIdBits 5;static constexpr int64_t sequenceBits 12;stati…...

若依打印sql

官方issue 自动生成的代码&#xff0c;sql日志怎么没有打印 在ruoyi-admin中的application.yml配置如下。 # 日志配置&#xff0c;默认 logging:level:com.ruoyi: debugorg.springframework: warn#添加配置com.ying: debug输出sql...

Camunda BPM Run下载(7.20)

官网地址: https://camunda.com/ 中文站点:http://camunda-cn.shaochenfeng.com https://downloads.camunda.cloud/release/camunda-bpm/run/7.20/https://downloads.camunda.cloud/release/camunda-bpm/run/7.20/camunda-bpm-run-7.20.0-alpha3.ziphttps://downloads.camunda…...

【Ubuntu】Ubuntu 22.04 升级 OpenSSH 9.3p2 修复CVE-2023-38408

升级原因 近日Openssh暴露出一个安全漏洞CVE-2023-38408&#xff0c;以下是相关资讯&#xff1a; 一、漏洞详情 OpenSSH是一个用于安全远程登录和文件传输的开源软件套件。它提供了一系列的客户端和服务器程序&#xff0c;包括 ssh、scp、sftp等&#xff0c;用于在网络上进行…...

【知网检索】2023年金融,贸易和商业管理国际学术会议(FTBM2023)

随着经济全球化&#xff0c;贸易自由化的进程加快&#xff0c;我国经济对外开放程度不断加深&#xff0c;正在加快融入世界经济一体化当中。当今世界各国竞争过程中&#xff0c;金融、贸易以及商业形态已成为其关键与焦点竞争内容。 2023年金融、贸易和商业管理国际学术会议(F…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...