Pytorch Tutorial【Chapter 1. Basic operation of tensor】
Pytorch Tutorial
文章目录
- Pytorch Tutorial
- Chapter 1. Basic operation of tensor
- Reference
Chapter 1. Basic operation of tensor
本节介绍有关张量Tensor的基本操作
Tensor相当于numpy中的ndarrays
- 创建空
Tensor和全零Tensor,torch.zeros(d0,d1)类似于numpy.zeros(size),torch.empty(d0,d1)类似于numpy.empty(size)
x1 = torch.empty(2,2)
x2 = np.empty((2,2))
x2 = torch.zeros(2,2)
x4 = np.zeros((2,2))
print(x1)
print(x2)
print(x3)
print(x4)
tensor([[ 1.4013e-45, 0.0000e+00],[-4.2944e+22, 6.7683e-43]])
tensor([[0., 0.],[0., 0.]])
[[0. 0. 0.][0. 0. 0.][0. 0. 0.][0. 0. 0.][0. 0. 0.]]
[[0. 0.][0. 0.]]
- 创建随机
Tensor,torch.rand(d0,d1)相当于numpy.random.rand(d0,d1),rand表示随机变量服从uniform distribution,torch.randn(d0,d1)相当于numpy.random.randn(d0,d1),randn表示随机变量服从 normal distribution
y1 = torch.rand(2,2)
y2 = np.random.rand(2,2)
y3 = np.random.random((2,2))
print(y1)
print(y2)
print(y3)
tensor([[0.4407, 0.1455],[0.0214, 0.6033]])
[[0.91633254 0.74086994][0.11203967 0.78700098]]
[[0.89562162 0.63706194][0.07474063 0.94183217]]
- 手动创建
Tensor,torch.tensor()类似于numpy.array()
z1 = torch.tensor(np.random.rand(2,2))
z2 = np.array([2,2])
print(z1)
print(z2)
tensor([[0.8592, 0.2296],[0.3234, 0.0014]], dtype=torch.float64)
[2 2]
- 创建全一
Tensor,torch.ones(d0,d1)类似于numpy.ones(size)
c1 = torch.ones(2,2)
c2 = np.ones((2,2))
print(c1)
print(c2)
tensor([[1., 1.],[1., 1.]])
[[1. 1.][1. 1.]]
- 创建独热码
Tensor,torch.eye(d0,d1)类似于np.eye(d0,d1)
c1 = torch.ones(2,2)
c2 = np.ones((2,2))
print(c1)
print(c2)
tensor([[1., 1.],[1., 1.]])
[[1. 1.][1. 1.]]
- 获得
Tensor的size,tensor.size()返回tensor的shape
r = torch.eye(2,2)
print(r.size())
torch.Size([2, 2])
- 加法,使用
+与numpy类似
a1 = torch.eye(2,2)
a2 = torch.rand(2,2)
print(a1+a2)
b1 = np.eye(2,2)
b2 = np.random.rand(2,2)
print(b1+b2)
tensor([[1.1682, 0.4159],[0.5044, 1.4019]])
[[1.7929664 0.96477472][0.3380899 1.35091993]]
- 加法,使用
torch.add()与numpy.add()类似
a1 = torch.eye(2,2)
a2 = torch.rand(2,2)
print(torch.add(a1,a2))
b1 = np.eye(2,2)
b2 = np.random.rand(2,2)
print(np.add(b1,b2))
tensor([[1.5244, 0.8070],[0.2586, 1.1021]])
[[1.52558655 0.85622143][0.92030175 1.18823413]]
- 加法,
tensor.add(a,b,out=result),将加法的结果保存在预先开辟好的result张量中
result = torch.empty(3,3)
torch.add(a1,a2, out=result)
print(result)
result = torch.add(a1,a2)
print(result)
tensor([[1.8654, 0.8892, 0.9849],[0.4269, 1.3964, 0.7995],[0.2235, 0.3375, 1.3471]])
tensor([[1.8654, 0.8892, 0.9849],[0.4269, 1.3964, 0.7995],[0.2235, 0.3375, 1.3471]])
- 加法,in-place原地替换的做法
tensor.add_(),注:所有的in-place的做法都有一个_
a1 = torch.eye(3,3)
a2 = torch.eye(3,3)
a1.add_(a2)
print(a1)
tensor([[2., 0., 0.],[0., 2., 0.],[0., 0., 2.]])
- tensor改变形状,
tensor.reshape(size)与ndarrays.reshape(size)类似,但tensor.reshape(size)不是in-place的做法,ndarryas.reshape(size)也不是in-place的做法
a = torch.eye(4,4)
b = a.reshape(2,8)
print(a)
print(b)c = np.eye(4,4)
d = c.reshape(2,8)
print(c)
print(d)
tensor([[1., 0., 0., 0.],[0., 1., 0., 0.],[0., 0., 1., 0.],[0., 0., 0., 1.]])
tensor([[1., 0., 0., 0., 0., 1., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 1.]])
[[1. 0. 0. 0.][0. 1. 0. 0.][0. 0. 1. 0.][0. 0. 0. 1.]]
[[1. 0. 0. 0. 0. 1. 0. 0.][0. 0. 1. 0. 0. 0. 0. 1.]]
- 使用
tensor.item()来获得 scalar tensor的值
a = torch.randn(3,3)
print(a)
print(a[0,0])
print(a[0,0].item())
tensor([[ 0.1261, -0.7185, 0.3167],[ 0.7252, 0.9447, 1.6690],[ 0.4250, -0.3057, 0.7201]])
tensor(0.1261)
0.126137375831604
Reference
参考教程
相关文章:
Pytorch Tutorial【Chapter 1. Basic operation of tensor】
Pytorch Tutorial 文章目录 Pytorch TutorialChapter 1. Basic operation of tensorReference Chapter 1. Basic operation of tensor 本节介绍有关张量Tensor的基本操作 Tensor相当于numpy中的ndarrays 创建空Tensor和全零Tensor,torch.zeros(d0,d1)类似于numpy…...
[环境配置]centos7安装vncserver
1. 首先,需要安装X Window System和GNOME桌面环境。可以通过以下命令进行安装: yum groupinstall "X Window System" yum groupinstall "GNOME Desktop" 2. 安装VNC服务器。可以通过以下命令进行安装: yum install ti…...
Excel功能总结
1)每一张表格上都打印表头 “页面布局”-->“打印标题”-->页面设置“工作表”页-->打印标题“顶端标题行” 如:固定第1~2行,设置成“$1:$2” 2)将页面内容打印在一页【缩印】 1.选好需要打印的区域,“页面布…...
用Rust实现23种设计模式之 组合模式
组合模式是一种结构型设计模式,它允许将对象组合成树状结构,并且能够以统一的方式处理单个对象和组合对象。以下是组合模式的优点和使用场景: 优点: 简化客户端代码:组合模式通过统一的方式处理单个对象和组合对象&a…...
opencv36-形态学操作-膨胀 cv2.dilate()
膨胀操作是形态学中另外一种基本的操作。膨胀操作和腐蚀操作的作用是相反的,膨胀操作能对图像的边界进行扩张。膨胀操作将与当前对象(前景)接触到的背景点合并到当前对象内,从而实现将图像的边界点向外扩张。如果图像内两个对象的…...
8266 ESP-07模块的使用 以及详细介绍
esp8266系列 陶瓷天线 版本 详细介绍说明 最近使用8266的ESP-01S做了个数据无线收发装置,发现板载天线信号太弱,装上外壳后信号更弱,因此考虑能否使用带有外接天线的模块代替ESP-01S。经过在安可信官网搜索发现,ESP07、ESP07S、ES…...
Linux之 centos、Ubuntu 安装常见程序 (-) Mysql 5.7 版本和8.0版本
CentOS 安装 MySql 注意 需要有root权限 安装5.7版本 – 由于MySql并不在CentOS的官方仓库中,所以需要通过rmp命令: 导入MySQL仓库密钥 1、配置MySQL的yum仓库 配置yum仓库 更新密钥 rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022 安装…...
【IDEA+Spark Streaming 3.4.1+Dstream监控套接字流统计WordCount保存至MySQL8】
【IDEASpark Streaming 3.4.1Dstream监控套接字流统计WordCount保存至MySQL8】 把DStream写入到MySQL数据库中 Spark 3.4.1MySQL 8.0.30sbt 1.9.2 文章目录 【IDEASpark Streaming 3.4.1Dstream监控套接字流统计WordCount保存至MySQL8】前言一、背景说明二、使用步骤1.引入库2…...
Dcat Admin 入门应用指南
在现代的网络应用开发中,管理后台是不可或缺的一部分。它为开发者提供了一个方便管理和监控应用数据的界面。而 Dcat Admin 是一个强大的管理后台框架,它基于 Laravel 框架开发,提供了丰富的功能和灵活的扩展性。本文将带您深入了解 Dcat Adm…...
计算机视觉:替换万物Inpaint Anything
目录 1 Inpaint Anything介绍 1.1 为什么我们需要Inpaint Anything 1.2 Inpaint Anything工作原理 1.3 Inpaint Anything的功能是什么 1.4 Segment Anything模型(SAM) 1.5 Inpaint Anything 1.5.1 移除任何物体 1.5.2 填充任意内容 1.5.3 替换任…...
AWS——01篇(AWS入门 以及 AWS之EC2实例及简单实用)
AWS——01篇(AWS入门 以及 AWS之EC2实例及简单实用) 1. 前言2. 创建AWS账户3. EC23.1 启动 EC2 新实例3.1.1 入口3.1.2 设置名称 选择服务3.1.3 创建密钥对3.1.4 网络设置——安全组3.1.4.1 初始设置3.1.4.2 添加安全组规则(开放新端口&…...
Clickhouse 优势与部署
一、clickhouse简介 1.1clickhouse介绍 ClickHouse的背后研发团队是俄罗斯的Yandex公司,2011年在纳斯达克上市,它的核心产品是搜索引擎。我们知道,做搜索引擎的公司营收非常依赖流量和在线广告,所以做搜索引擎的公司一般会并行推…...
全球数据泄露事件增加近三倍
网络安全公司 Surfshark 的最新研究显示,2023 年第二季度共有 1.108 亿个账户遭到泄露,其中美国排名第一,几乎占 4 月至 6 月所有泄露事件的一半。 俄罗斯排名第二,西班牙排名第三,其次是法国和土耳其。 与 2023 年…...
【雕爷学编程】 MicroPython动手做(38)——控制触摸屏2
MixPY——让爱(AI)触手可及 MixPY布局 主控芯片:K210(64位双核带硬件FPU和卷积加速器的 RISC-V CPU) 显示屏:LCD_2.8寸 320*240分辨率,支持电阻触摸 摄像头:OV2640,200W像素 扬声器&#…...
钉钉微应用
钉钉微应用 在做钉钉微应用开发的时候,遇到了一些相关性的问题,特此记录下,有遇到其他问题的,欢迎一起讨论 调试工具 当我们基于钉钉开发微应用时,难免会遇到调用钉钉api后的调试,这个时候可以安装eruda…...
【 SpringSecurity】第三方认证方法级别安全
文章目录 SpringSecurity 第三方认证实现方法级别的安全 SpringSecurity 第三方认证 在登录网页时,时常有用其他账号登录的方式,它们能够让用户避免在Web站点特定的登录页上自己输入凭证信息。这样的Web站点提供了一种通过其他网站(如Facebo…...
达梦数据库在windows上的安装
前言 简单记录达梦数据库DM7在windows10上的安装过程 1 下载并安装安装包 官网登录后才能下载,建议先注册账户。 下载地址:产品下载-达梦数据 ,CPU选择x86,操作系统选择win64即可。解压安装包后,一路安装下去即可。…...
新手Vite打包工具的使用并解决yarn create vite报错
一、手动创建 1.创建vite-Demo文件夹 2.初始化 yarn init -y 3.安装vite yarn add -D vite 4.打包准备 说明:不需要在src下面创建,在vite-Demo文件夹创建 4.1index.js文件 document.body.insertAdjacentHTML("beforeend","<h1>…...
SpringMVC框架——First Day
目录 三层架构 MVC模型 SpringMVC 快速入门案例 SpringMVC的概述(了解) SpringMVC在三层架构的位置 SpringMVC的优势(了解) 创建SpringMVC的Maven项目 1.在pom.xml中添加所需要的jar包 2.在工程的web.xml中配置核心Spring…...
基于C++雪花算法工具类Snowflake -来自chatGPT
#include <iostream> #include <chrono> #include <stdexcept>class Snowflake { private:// 雪花算法的各个参数static constexpr int64_t workerIdBits 5;static constexpr int64_t datacenterIdBits 5;static constexpr int64_t sequenceBits 12;stati…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
