【LangChain】Prompts之Prompt templates
Prompts
编程模型的新方法是通过提示(prompts)。
prompts是指模型的输入。该输入通常由多个组件构成。 LangChain 提供了多个类和函数,使构建和使用prompts变得容易。
- Prompt templates(提示模板): 参数化模型输入
- Example selectors(选择器示例): 动态选择要包含在提示中的示例
prompt 翻译:提示
Prompt templates
语言模型将文本作为输入 - 该文本通常称为prompt。
通常,这不仅仅是一个硬编码字符串,而是模板、一些示例和用户输入的组合。
LangChain 提供了多个类和函数,使构建和使用prompts变得容易。
什么是提示模板?(What is a prompt template?)
prompt template是指生成提示的可重复的方式。它包含一个文本字符串(“模板”),可以接收来自最终用户的一组参数并生成提示。
提示模板包含:
- 对语言模型的指令,
- 一组几个镜头示例来帮助语言模型生成更好的响应,
- 对语言模型的一个问题。
这是最简单的例子:
from langchain import PromptTemplatetemplate = """\
您是新公司的命名顾问。
生产{product}的公司起什么好名字?
"""prompt = PromptTemplate.from_template(template)
prompt.format(product="彩色袜子")
结果:
您是新公司的命名顾问。
一家生产彩色袜子的公司起什么名字好呢?
创建提示模板(Create a prompt template)
您可以使用 PromptTemplate 类创建简单的硬编码提示。提示模板可以采用任意数量的输入变量,并且可以格式化以生成提示。
from langchain import PromptTemplate# 没有输入变量的示例提示
no_input_prompt = PromptTemplate(input_variables=[], template="给我讲个笑话。")
no_input_prompt.format()
# -> "给我讲个笑话。"# 带有一个输入变量的示例提示
one_input_prompt = PromptTemplate(input_variables=["adjective"], template="给我讲一个{adjective}笑话。")
one_input_prompt.format(adjective="有趣")
# -> "给我讲一个有趣的笑话。"# 具有多个输入变量的示例提示
multiple_input_prompt = PromptTemplate(input_variables=["adjective", "content"], template="给我讲一个关于{content}的{adjective}笑话。"
)
multiple_input_prompt.format(adjective="funny", content="chickens")
# -> "给我讲一个关于鸡的有趣笑话。"
如果您不想手动指定 input_variables,您还可以使用 from_template 类方法创建 PromptTemplate。 langchain 将根据传递的模板自动推断 input_variables。
template = "给我讲一个关于{content}的{adjective}笑话。"prompt_template = PromptTemplate.from_template(template)
prompt_template.input_variables
# -> ['adjective', 'content']
prompt_template.format(adjective="funny", content="chickens")
# -> 给我讲一个关于鸡的有趣笑话。
您可以创建自定义提示模板,以您想要的任何方式格式化提示。有关更多信息,请参阅自定义提示模板。
聊天提示模板(Chat prompt template)
聊天模型将聊天消息列表作为输入 - 该列表通常称为提示(prompt)。这些聊天消息与原始字符串(您将传递到 LLM 模型中)不同,因为每条消息都与一个角色关联。
例如,在 OpenAI 的Chat Completion API中,聊天消息可以与 AI、人类或系统角色相关联。该模型会更紧密地遵循系统聊天消息的指令。
LangChain 提供了多种提示模板,可以轻松构建和使用提示。官方鼓励在查询聊天模型时使用这些聊天相关的提示模板而不是 PromptTemplate,以充分利用底层聊天模型的潜力。
from langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)
要创建与角色关联的消息模板,请使用 MessagePromptTemplate。
为了方便起见,模板上公开了一个 from_template 方法。如果您要使用此模板,它将如下所示:
template="您是将 {input_language} 翻译成 {output_language} 的得力助手。"
# 创建角色:系统的模板
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
# 创建角色:人类的模板
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
如果你想更直接地构造MessagePromptTemplate,你也可以在外部创建一个PromptTemplate,然后将其传入,例如:
# 创建一个常规的模板
prompt=PromptTemplate(template="您是将 {input_language} 翻译成 {output_language} 的得力助手。",input_variables=["input_language", "output_language"],
)
# 再创建一个角色:系统 的模板
system_message_prompt_2 = SystemMessagePromptTemplate(prompt=prompt)
# 判断和之前创建的是否一样
assert system_message_prompt == system_message_prompt_2
之后,您可以从一个或多个 MessagePromptTemplate 构建 ChatPromptTemplate。
我们可以使用 ChatPromptTemplate 的 format_prompt ——这会返回一个 PromptValue,您可以将其转换为字符串或 Message 对象,具体取决于您是否想要使用格式化值作为 llm 或聊天模型的输入。
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])# 从格式化消息中获取聊天完成信息
chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages()
结果:
[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),HumanMessage(content='I love programming.', additional_kwargs={})]
总结
本篇主要讲述:
- 如何创建模板提示:
方式一:PromptTemplate(input_variables=[], template="Tell me a joke.")
方式二:template = "Tell me a {adjective} joke about {content}." prompt_template = PromptTemplate.from_template(template),这种不用写input_variables。
- 如何创建
messageTemplate,我们常常需要与角色相关联:
角色有:
- AI(AIMessagePromptTemplate)、
- 人类(HumanMessagePromptTemplate)、
- 系统(SystemMessagePromptTemplate)。
最后利用ChatPromptTemplate.from_messages(xxx)方法,整合这些角色,就构造出了,聊天机器人。
总结
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/
相关文章:
【LangChain】Prompts之Prompt templates
Prompts 编程模型的新方法是通过提示(prompts)。 prompts是指模型的输入。该输入通常由多个组件构成。 LangChain 提供了多个类和函数,使构建和使用prompts变得容易。 Prompt templates(提示模板): 参数化模型输入Example selectors(选择器示例): 动态选择要包含在…...
【数字IC基础】时序违例的修复
时序违例的修复 建立时间违例保持时间违例Buffer 插入位置参考资料 建立时间违例 基本思路是减少数据线的延时、减少 Launch clock line 的延时、增加capture clock line的delay 加强约束,重新进行综合,对违规的路径进行进一步的优化,但是一…...
深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测
大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细…...
Node.js-fs模块文件创建、删除、重命名、文件内容的写入、读取以及文件夹的相关操作
一、写入文件操作 异步写入:writeFile() 同步写入:writeFileSync() const fs require("fs"); fs.writeFile("目标文件路径", "要写入的内容", err > {if(err){console.log(err);return;}console.log("写入成功&a…...
LIN协议总结
目录 一、LIN是什么1、LIN的概念2、扩展介绍一下同步通信和异步通信的区别3、LIN连接结构及节点构成 二、LIN的特点三、LIN协议层1、帧的结构2、帧的类型3、进度表4、状态机实现5、网络管理6、状态管理 四、帧收发的硬件实现1、组成2、硬件特点3、协议控制器4、总线收发器5、LI…...
Redis BigKey案例
面试题: 阿里广告平台,海量数据里查询某一固定前缀的key小红书,你如何生产上限制keys*/flushdb/flushall等危险命令以防止误删误用?美团,MEMORY USAGE命令你用过吗?BigKey问题,多大算big&#…...
ThinkPHP v6.0.8 CacheStore 反序列化漏洞
漏洞说明 1. 漏洞原理:ThinkPHP 6.0.8 CacheStore 会触发POP利用链子,造成任意命令执行 2. 组件描述: ThinkPHP是一个免费开源的,快速、简单的面向对象的轻量级PHP开发框架 3. 影响版本:V6.0.8 漏洞复现 1. 环境安…...
Spring 事务详解(注解方式)
目 录 序言 1、编程式事务 2、配置声明式事务 2.1 基于TransactionProxyFactoryBean的方式(不常用,因为要为每一个类配置TransactionProxyFactoryBean) 2.2 基于AspectJ的XML方式(常用,可配置在某些类下的所有子…...
华为云waf 使用场景
防护Web应用免受攻击就用华为云Web应用防火墙 Web应用防火墙(Web Application Firewall, WAF),通过对HTTP(S)请求进行检测,识别并阻断SQL注入、跨站脚本攻击、网页木马上传、命令/代码注入、文件包含、敏感文件访问、第…...
?.的写法 后缀修饰符
概览:处理后端返回的数据data,写法:data?.name。解决vue框架编译出现的报错Cannot read property name of undefined。出现问题的原因:这是因为我们试图访问对象中不在的 key 为 name 的属性,那么怎么解决呢ÿ…...
org.apache.hadoop.hive.ql.exec.DDLTask. show Locks LockManager not specified解决
Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. show Locks LockManager not specified解决 当在Hive中执行show locks语句时,出现"LockManager not specified"错误通常是由于…...
Adaptive autosar 都有哪些模块?各有什么功能?
Adaptive autosar是一种用于高性能计算ECU的软件平台,它支持自适应应用程序的开发和运行。它由两部分组成:基础(Foundation)和服务(Service)。基础包括了操作系统接口、执行管理、网络管理、识别访问管理、加密、更新和配置管理等功能。服务包括了通信管理、RESTful、时间…...
C++ 动态内存分配
在C中动态内存的分配技术可以保证程序在允许过程中按照实际需要申请适量的内存,使用结束后还可以释放,这种在程序运行过程中申请和释放的存储单元也称为堆。 申请和释放过程一般称为建立和删除。 在C程序中,建立和删除堆对象使用两个运算符&…...
设计模式——面向对象的7大设计原则
1.单一职责原则 一个类中最好只放一种类型的方法,比如Dao中只有和数据库交互相关的代码。实现高内聚,低耦合。 2.开闭原则 对外拓展开放,对内修改关闭,有新的需求时不要修改已有代码,而是添加新的代码,比…...
智慧防汛,数字科技的力量
随着夏日的脚步临近,台风季节即将降临。对于那些居住在沿海地区的人们来说,台风是一种常见的自然灾害,其带来的风雨可能对生命和财产造成严重威胁。然而,随着数字科技的飞速发展,可视化技术为防汛抗台工作带来了全新的…...
“中国软件杯”飞桨赛道晋级决赛现场名单公布
“中国软件杯”大学生软件设计大赛是由国家工业和信息化部、教育部、江苏省人民政府共同主办,是全国软件行业规格最高、最具影响力的国家级一类赛事,为《全国普通高校竞赛排行榜》榜单内赛事。今年,组委会联合百度飞桨共同设立了“智能系统设…...
JDBC处理批量数据提高效率
文章目录 0 说明1 如何使用jdbc操作数据库1.1 加载数据库驱动1.2 建立数据库连接1.3 创建Statement或者PreparedStatement用来执行SQL1.4 开始执行SQL语句1.5 处理结果集1.6 关闭连接1.7 完整代码 2 批量操作数据库3 如何打印SQL语句4 jdbc常用开源类库 1 JDBC实现往MySQL插入百…...
使用css和js给按钮添加微交互的几种方式
使用css和js给按钮添加微交互的几种方式 在现实世界中,当我们轻弹或按下某些东西时,它们会发出咔嗒声,例如电灯开关。有些东西会亮起或发出蜂鸣声,这些响应都是“微交互”,让我们知道我们何时成功完成了某件事。在本文…...
react面试之context的value变化时,内部所有子组件是否变化
上测试代码 // context const state {a: 1,b: 1, } const context createContext(state);export default context; // A组件 const A () > {const { a } useContext(context);return (<div>{a}</div>) } export default A;// B组件 const B () > {cons…...
使用okHttp不走代理问题
背景 某日使用okhttp设置代理并发送爬虫请求时,发现部分url请求没有走代理直接和目标url建立了连接,伪代码如下。初始化okhttpClient时设置了proxySelecter代理,但是调用okhttpClient.newCall请求时并没用调用proxySelecter.select函数获取代…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
