2|数据挖掘|聚类分析|k-means/k-均值算法
k-means算法
k-means算法,也被称为k-平均或k-均值,是一种得到最广泛应用的聚类算法。

算法首先随机选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇。然后重新计算每个簇的平均值。这个过程不断重复直到准则函数收敛。
准则函数试图使生成的结果簇尽可能地紧凑和独立。

算法步骤
(1) 首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。
(2) 计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到哪一类中。
(3) 计算每一类中中心点作为新的中心点。
(4) 重复以上步骤,直到每一类中心在每次迭代后变化不大为止。也可以多次随机初始化中心点,然后选择运行结果最好的一个。

算法优点
(1)速度快;
(2)计算简便 ;
算法缺点
(1)我们必须提前知道数据有多少类/组;
(2)K-Medians是K-Means的一种变体,是用数据集的中位数而不是均值来计算数据的中心点。;
(3)K-Means对于“噪声”和“孤立点数据”等异常值是敏感的,K-Medians的优势是使用中位数来计算中心点不受异常值的影响;缺点是计算中位数时需要对数据集中的数据进行排序,速度相对于K-Means较慢。

相关文章:

2|数据挖掘|聚类分析|k-means/k-均值算法
k-means算法k-means算法,也被称为k-平均或k-均值,是一种得到最广泛应用的聚类算法。算法首先随机选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇。然后重新计…...

使用和制作动、静态库
文章目录什么是库?静态库打包方式使用方式生成并执行可执行程序粗暴方式优化方式动态库不一样的.o文件打包方式使用方式生成可执行程序运行可执行程序无法运行时的解决方案动静态库与动静态链接什么是库? 从一开始的helloworld,到现在熟练使…...

【Java基础】023 -- 集合进阶(List、Set、泛型、树)
目录 一、集合的体系结构 1、单列集合(Collection) 二、Collection集合 1、Collection常见方法 ①、代码实现: ②、contains方法重写equals方法示例:(idea可自动重写) 2、Collection的遍历方式(…...

面试题整理01-集合详解
文章目录前言一、集合的整体结构单列集合接口:双列集合接口:二、单列集合详解1.List接口1.1 ArrayList集合特点:扩容:添加元素遍历1.2 LinkedList集合特点:添加元素:2.Set接口2.1 HashSet集合特点ÿ…...

数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

ArcGIS网络分析之发布网络分析服务(二)
在上一篇中讲述了如何构建网络分析数据集,本篇将讲解如何发布网络分析服务。本文将使用上一篇中建立的网络数据集,下载地址在上一篇博文的最后已给出。 之前我们已经实现了基于ArcMap中的网络分析,但是仅仅支持本地是万万不够的,这里我们的目的就是将我们建好的网络分析图…...

js实现元素样式切换的基本功能
需求:用户第一次点击某些元素,改变元素的某些样式,比如背景颜色,字体颜色。用户第二次点击某些元素,恢复之前的样式。.....思路:准备一定量的div盒子,并取相同的类名<div class"box&quo…...
java 策略模式 + 工厂模式 实例
一 前言 经常听说各种设计模式,知道理论,也知道应该使用,但具体怎么用,什么时候用,使用的优点一直比较模糊,今天写一个项目中经常用到的模式,来具体理解。项目中经常用到工厂模式或者策略模式&…...

本地生成动漫风格 AI 绘画 图像|Stable Diffusion WebUI 的安装和部署教程
Stable Diffusion WebUI 的安装和部署教程1. 简介2. Windows安装环境3. 运行4. 模型下载链接5. 其他资源1. 简介 先放一张WebUI的图片生成效果图,以给大家学习的动力 :) 怎么样,有没有小小的心动?这里再补充一下&…...
华为OD机试 - 异常的打卡记录 | 备考思路,刷题要点,答疑 【新解法】
最近更新的博客 【新解法】华为OD机试 - 关联子串 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 停车场最大距离 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 任务调度 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试…...

「机器学习笔记」之深度学习基础概念(基于Pytorch)
本文以 Pytorch 为线索,介绍人工智能和深度学习相关的一些术语、概念。 关于发展历史您也可以阅读深度学习神经网络之父 Jrgen Schmidhuber 所写的《Annotated History of Modern AI and Deep Learning(现代人工智能和深度学习的注释版历史)…...

概率和似然
在日常生活中,我们经常使用这些术语。但是在统计学和机器学习上下文中使用时,有一个本质的区别。本文将用理论和例子来解释概率和似然之间的关键区别。 概率与似然 假设在一场棒球比赛中,两队的队长都被召集到场上掷硬币。获胜的队长将根据掷…...

前期软件项目评估偏差,如何有效处理?
1、重新评估制定延期计划 需要对项目进行重新评估,将新的评估方案提交项目干系人会议,开会协商一致后按照新的讨论结果制定计划,并实施执行。 软件项目评估偏差 怎么办:重新评估制定延期计划2、申请加资源 如果项目客户要求严格&a…...

Xline v0.2.0: 一个用于元数据管理的分布式KV存储
Xline是什么?我们为什么要做Xline? Xline是一个基于Curp协议的,用于管理元数据的分布式KV存储。现有的分布式KV存储大多采用Raft共识协议,需要两次RTT才能完成一次请求。当部署在单个数据中心时,节点之间的延迟较低&a…...
CompletableFuture
一、一个示例回顾Future 一些业务场景我们需要使用多线程异步执行任务,加快任务执行速度。JDK5新增了Future接口,用于描述一个异步计算的结果。虽然Future以及相关使用方法提供了异步执行任务的能力,但是对于结果的获取却是很不方便,我们必须使用Future.get()的方式阻塞调…...

面试不到10分钟就被赶出来了,问的实在是太变态了...
干了两年外包,本来想出来正儿八经找个互联网公司上班,没想到算法死在另一家厂子。 自从加入这家外包公司,每天都在加班,钱倒是给的不少,所以也就忍了。没想到11月一纸通知,所有人不许加班,薪资…...

【C++】类与对象 (四)初始化列表 static成员 友元 内部类 匿名对象 拷贝对象时的一些编译器优化
前言 本章就是我们C中类与对象的终章了,不过本章的难度不大,都是类中一些边边角角的知识,记忆理解就行了,相信经过这么长时间的学习类与对象,你对面向对象也有了更加深的理解,最后我们学习完边边角角的一些…...
04:进阶篇 - 编译 CTK
作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 在使用 CTK 之前,首先要进行编译。但要成功编译它,并不是一件很容易的事,这不仅取决于平台、Qt 的版本,也取决于编译器,以及所使用的 IDE。 平台(Linux、Windows)Qt 版本(4.x、5.x、6.x)编译器(MS…...
SQL73 返回所有价格在 3美元到 6美元之间的产品的名称和价格
描述有表Productsprod_idprod_nameprod_pricea0011egg3a0019sockets4b0019coffee15【问题】编写 SQL 语句,返回所有价格在 3美元到 6美元之间的产品的名称(prod_name)和价格(prod_price),使用 AND操作符&am…...

【Linux 多线程互斥】如何保证锁的原子性(互斥的原理)
临界资源:可以被多个执行流(线程或者叫轻量级进程)同是访问的(多个执行流共享的,比如:全局、堆等等);临界区:访问这些临界资源的代码;原子性:没有中间态&…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...