Redis相关面试题
Redis的使用场景
根据自己简历上的业务进行回答
缓存 穿透、击穿、雪崩、双写一致、持久化、数据过期、淘汰策略
分布式锁 setnx redisson
缓存穿透:查询一个不存在的数据,数据库查不到数据也不会直接写入缓存,就会导致每次请求都查询数据库,一般都是恶意攻击。
解决方案:1、缓存不存在的数据,这会消耗内存 2、使用布隆过滤器,redis中的一种数据结构 bitmap 位图结构,对它先进行预热(多次hash算法),当key不存在一定不存在,当key存在可能不存在,会存在一定的误判,误判率可以设置为5%。
缓存击穿:当缓存中的key刚好过期,恰好这时间对这个key有大量的并发请求过来,这些请求可能会瞬间把DB压垮。
解决方案:1、互斥锁,强一致性,性能差 2、对热点数据不设置过期时间
缓存雪崩:同一时段大量的缓存key同时失效或者Redis宕机,导致大量请求到数据库。
解决方案:1、给不同的Key的过期时间添加随机值 2、利用Redis集群提高服务的可用性
3、给缓存业务添加降级限流策略
双写一致(针对高并发)
解决方案:1、强一致性,可以采用redisson读写锁来保证数据的同步,在读的时候添加读锁,可以保证读读不互斥,读写互斥。当更新数据的时候,添加排它锁,读读和读写都互斥。 2、最终一致性,可以采用MQ中间件,更新数据之后,通知缓存删除
持久化
1、RDB:一个快照文件,bgsave的命令通过fork一个子进程把内存存储的数据写到磁盘上,采用copy on write 的策略不影响主线程的写操作,避免了子线程无意义的复制。
2、AOF: 追加文件,当redis操作写命令时,都会存储在这个文件中。
哪种方式恢复比较快?
RDB因为是二进制文件,保存的体积比较小,恢复速度比较快,但它有可能丢失数据。
AOF虽然恢复的速度慢一些,但是它丢数据的风险要小很多,在设置刷盘策略,可以设置每秒批量写入一次命令
Redis过期删除策略
惰性删除:设置该key过期时间后,不去管它,当需要该key时,会检查是否过期,如果过期就删掉它,反之返回该key
优点:对CPU友好,只有使用才检查key是否过期。
缺点:对内存不友好,过期的key一直没有使用,会一直存在内存中
定期删除:每隔一段时间,对key进行检查,删除里面过期的key(抽取一定数量的key进行检查,并删除其中的key) (SLOW模式和FAST模式)
优点:有效释放的过期key占用的内存
缺点: 难以确定删除操作执行的时长和频率
过期删除策略:惰性删除 + 定期删除两种策略配合使用
淘汰策略
数据的淘汰策略:当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。
Redis支持8种不同策略来选择要删除的key:
noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
allkeys-random:对全体key ,随机进行淘汰。
volatile-random:对设置了TTL的key ,随机进行淘汰。
allkeys-lru: 对全体key,基于LRU算法进行淘汰
volatile-lru:对设置了TTL的key,基于LRU算法进行淘汰
allkeys-lfu: 对全体key,基于LFU算法进行淘汰
volatile-lfu:对设置了TTL的key,基于LFU算法进行淘汰
LRU (Least Recently Used) 最近最少使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU(Least Frequently Used) 最少频率使用。会统计每个key的方问频率,值越小淘汰优先级越高。
分布式锁
使用场景:定时任务、抢单、幂等性场景
如何实现?
在redis中提供了一个命令setnx(SET if not exists)
由于redis是单线程的,用了命令之后,只有一个客户端对某一个key设置值,在没有过期或删除key的时候其它客户端是不能设置这个key的。
如何控制Redis实现分布式锁有效时长?
采用框架redisson实现的。
在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了。
还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自选不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。
redisson实现的分布式锁是可重入的吗?
是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。
redisson实现的分布式锁能解决主从一致性的问题吗?
不能解决,但是可以使用redisson提供的红锁来解决,但是这样的话,性能就太低了,如果业务中非要保证数据的强一致性,建议采用zookeeper实现的分布式锁。
Redis集群有哪些方案?
主从复制
master 写操作,slave 读操作,读写分离。
主从数据同步原理
主从全量同步
1.从节点请求主节点同步数据(replication id、 offset)
2.主节点判断是否是第一次请求,是第一次就与从节点同步版本信息 (replication id和offset)
3.主节点执行bgsave,生成rdb文件后,发送给从节点去执行
4.在rdb生成执行期间,主节点会以命令的方式记录到缓冲区(一个日志文件)
5.把生成之后的命令日志文件发送给从节点进行同步
主从增量同步
1.从节点请求主节点同步数据,主节点判断不是第一次请求,不是第一次就获取从节点的offset值
2.主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步
哨兵模式
保证Redis的高并发高可用 ,实现主从集群的自动故障恢复(监控、自动故障恢复、通知)
你们使用redis是单点还是集群,哪种集群?
主从(1主1从)+哨兵就可以了。单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。
redis集群脑裂,该怎么解决呢?
集群脑裂是由于主节点和从节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到主节点,所以通过选举的方式提升了一个从节点为主,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在老的主节点那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将老的主节点降为从节点,这时再从新master同步数据,就会导致数据丢失。
解决:我们可以修改redis的配置,可以设置最少的从节点数量以及缩短主从数据同步的延迟时间,达不到要求就拒绝请求就可以避免大量的数据丢失。
分片集群
有什么作用?
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
Redis分片集群中数据是怎么存储和读取的?
Redis分片集群引入了哈希槽的概念,Redis 集群有16384个哈希槽
将16384个插槽分配到不同的实例
读写数据:根据key的有效部分计算哈希值,对16384取余(有效部分,如果key前面有大括号,大括号的内容就是有效部分,如果没有,则以key本身做为有效部分)余数做为插槽,寻找插槽所在的实例
Redis是单线程的,但是为什么还那么快?
Redis是纯内存操作,执行速度非常快
采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题
使用I/0多路复用模型,非阴塞IO
能解释一下I/O多路复用模型?
1.I/0多路复用
是指利用单个线程来同时监听多个Socket,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的/0多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。
2.Redis网络模型
就是使用I/O多路复用结合事件的处理器来应对多个Socket请求
连接应答处理器
命令回复处理器,在Redis6.0之后,为了提升更好的性能,使用了多线程来处理回复事件
命令请求处理器,在Redis6.0之后,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程
相关文章:
Redis相关面试题
Redis的使用场景 根据自己简历上的业务进行回答 缓存 穿透、击穿、雪崩、双写一致、持久化、数据过期、淘汰策略 分布式锁 setnx redisson 缓存穿透:查询一个不存在的数据,数据库查不到数据也不会直接写入缓存,就会导致每次请求都查询数据库…...
数据库简介
1、数据库安装: rpm (redhat package manager) 也是个包管理工具: rpm -ivh 安装 rpm -e 表示卸载,卸载的时候有可能出现依赖的问题,可以用 --nodeps 忽略依赖卸载。 rpm -qa 搜索系统中安装的rpm的应用。 如果使用离线包,安装顺序不要乱。 m…...
腾讯云国际轻量应用服务器怎么使用呢?
腾讯云国际轻量应用服务器怎么使用呢?下面一起来了解一下: 1. 熟悉轻量应用服务器基础知识 ①什么是轻量应用服务器 TencentCloud Lighthouse? ②轻量应用服务器与云服务器 CVM 的区别是什么? ③为什么选择轻量应用服务器…...
arm环境cloudstack在vpc下创建虚拟机失败
一、环境说明 操作系统:openEuler 22.03CPU:Kunpeng-920,arm v8cloudstack:4.18libvirtd:6.2.0 二、问题描述 在UI上创建VPC后,平台会同时创建一个virtual router,此时virtual router有两个网…...

Linux上安装Keepalived,多台Nginx配置Keepalived(保姆级教程)
目录 一、yum安装 第一步:下载 第二步:编辑Keepalived配置文件(第一台) 第三步:编辑Keepalived配置文件(第二台) 第四步:我们在本机利用cmd ping一下 一、yum安装 第一步&…...

centos7 ‘xxx‘ is not in the sudoers file...
如题 执行命令输入密码后时报错: [sudo] password for admin (我的账户)原因,当前用户还没有加入到root的配置文件中。 解决 vim打开配置文件,如下: #切换到root用户 su #编辑配置文件 vim /etc/sudoe…...

Zebec Payroll :计划推出 WageLink On-Demand Pay,进军薪酬发放领域
“Zebec Protocol 生态旨以 Web3 的方式建立全新的公平秩序,基于其流支付体系构建的薪酬支付板块,就是解决问题的一把利刃”...
【2023】字节跳动 10 日心动计划——第三关
目录 1. 最长有效括号2. 有序数组的平方 1. 最长有效括号 🔗 原题链接:32. 最长有效括号 类似于有效的括号,考虑用栈来解决。 具体来讲,我们始终保持栈底元素为当前已经遍历过的元素中「最后一个没有被匹配的右括号的下标」&…...

【无网络】win10更新后无法联网,有线无线都无法连接,且打开网络与Internet闪退
win10更新后无法联网,有线无线都无法连接,且打开网络与Internet闪退 法1 重新配置网络法2 更新驱动法3 修改注册表编辑器法4 重装系统 自从昨晚点了更新与重启后,今天电脑就再也不听话了,变着花样地连不上网。 检查路由器…...
HTML <script> 标签
实例 在 HTML 页面中插入一段 JavaScript: <script type="text/javascript"> document.write("Hello World!") </script>(在本页底部可以找到更多实例) 定义和用法 <script> 标签用于定义客户端脚本,比如 JavaScript。 script …...

FPGA----UltraScale+系列的PS侧与PL侧通过AXI-HP交互(全网唯一最详)附带AXI4协议校验IP使用方法
1、之前写过一篇关于ZYNQ系列通用的PS侧与PL侧通过AXI-HP通道的文档,下面是链接。 FPGA----ZCU106基于axi-hp通道的pl与ps数据交互(全网唯一最详)_zcu106调试_发光的沙子的博客-CSDN博客大家好,今天给大家带来的内容是࿰…...
Unity小游戏——迷你拼图
游戏展示 拼图演示 资源: 链接:https://pan.baidu.com/s/1BGeSmRCO_WZRUyl3MxefGw 提取码:0n4a 一、玩法介绍 排列拼图碎片,拼出最后的图案。可以点住碎片的任意位置拖动;点击"重来"按钮,可以…...

三 动手学深度学习v2 —— Softmax回归+损失函数+图片分类数据集
三 动手学深度学习v2 —— Softmax回归损失函数图片分类数据集 目录: softmax回归损失函数 1. softmax回归 回归vs分类: 回归估计一个连续值分类预测一个离散类别 从回归到多类分类 回归 单连续数值输出自然区间R跟真实值的误差作为损失 分类 通常多个输出输出i是预测为第…...

Stable Diffusion 使用教程
环境说明: stable diffusion version: v1.5.1python: 3.10.6torch: 2.0.1cu118xformers: N/Agradio: 3.32.0 1. 下载 webui 下载地址: GitHub stable-diffusion-webui 下载 根据自己的情况去下载: 最好是 N 卡:(我的…...

在线考试系统springboot学生试卷问答管理java jsp源代码mysql
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 在线考试系统springboot 系统有2权限:管理…...

创建vue-cli(脚手架搭建)
目录 功能 需要的环境 使用HbuilderX快速搭建一个vue-cli项目 组件路由 element-ui vue-cli 官方提供的一个脚手架,用于快速生成一个 vue 的项目模板;预先定义 好的目录结构及基础代码,就好比咱们在创建 Maven 项目时可以选择创建一个 骨…...

【单调栈part02】| 503.下一个更大元素||、42.接雨水
🎈LeetCode503.下一个更大元素|| 链接:503.下一个更大元素|| 给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按…...
Java——如何使用Stream替换掉List<Student>中符合要求的元素
使用Stream替换掉List中符合要求的元素 要使用Stream流替换掉List中符合特定条件的元素,您可以使用Stream的map()方法对每个元素进行映射,并使用collect()方法将映射后的元素收集到一个新的List中。 示例代码: import java.util.ArrayList; …...
gin 框架中的 gin.Context
〇、前言 Context 是 gin 中最重要的部分。 例如,它允许我们在中间件之间传递变量、管理流程、验证请求的 JSON 并呈现 JSON 响应。 Context 中封装了原生的 Go HTTP 请求和响应对象,同时还提供了一些方法,用于获取请求和响应的信息、设置响…...

新版chrome浏览器恢复下载的时候恢复底栏提示
近日,谷歌对其Chrome浏览器进行了更新,为所有桌面系统的Chrome浏览器增加了位于地址栏右侧的“下载”气泡,并同时取消了原有的底部下载栏。 谷歌表示,这次更新的目的是为了让用户更方便地与最近下载的文件进行交互。 然而&#x…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...