当前位置: 首页 > news >正文

Redis相关面试题

Redis的使用场景
根据自己简历上的业务进行回答
缓存 穿透、击穿、雪崩、双写一致、持久化、数据过期、淘汰策略
分布式锁 setnx redisson

缓存穿透:查询一个不存在的数据,数据库查不到数据也不会直接写入缓存,就会导致每次请求都查询数据库,一般都是恶意攻击。
解决方案:1、缓存不存在的数据,这会消耗内存 2、使用布隆过滤器,redis中的一种数据结构 bitmap 位图结构,对它先进行预热(多次hash算法),当key不存在一定不存在,当key存在可能不存在,会存在一定的误判,误判率可以设置为5%。

缓存击穿:当缓存中的key刚好过期,恰好这时间对这个key有大量的并发请求过来,这些请求可能会瞬间把DB压垮。
解决方案:1、互斥锁,强一致性,性能差 2、对热点数据不设置过期时间

缓存雪崩:同一时段大量的缓存key同时失效或者Redis宕机,导致大量请求到数据库。
解决方案:1、给不同的Key的过期时间添加随机值 2、利用Redis集群提高服务的可用性
3、给缓存业务添加降级限流策略

双写一致(针对高并发)
解决方案:1、强一致性,可以采用redisson读写锁来保证数据的同步,在读的时候添加读锁,可以保证读读不互斥,读写互斥。当更新数据的时候,添加排它锁,读读和读写都互斥。 2、最终一致性,可以采用MQ中间件,更新数据之后,通知缓存删除

持久化
1、RDB:一个快照文件,bgsave的命令通过fork一个子进程把内存存储的数据写到磁盘上,采用copy on write 的策略不影响主线程的写操作,避免了子线程无意义的复制。
2、AOF: 追加文件,当redis操作写命令时,都会存储在这个文件中。
哪种方式恢复比较快?
RDB因为是二进制文件,保存的体积比较小,恢复速度比较快,但它有可能丢失数据。
AOF虽然恢复的速度慢一些,但是它丢数据的风险要小很多,在设置刷盘策略,可以设置每秒批量写入一次命令

Redis过期删除策略

惰性删除:设置该key过期时间后,不去管它,当需要该key时,会检查是否过期,如果过期就删掉它,反之返回该key

优点:对CPU友好,只有使用才检查key是否过期。
缺点:对内存不友好,过期的key一直没有使用,会一直存在内存中

定期删除:每隔一段时间,对key进行检查,删除里面过期的key(抽取一定数量的key进行检查,并删除其中的key) (SLOW模式和FAST模式)

优点:有效释放的过期key占用的内存
缺点: 难以确定删除操作执行的时长和频率

过期删除策略:惰性删除 + 定期删除两种策略配合使用

淘汰策略
数据的淘汰策略:当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。

Redis支持8种不同策略来选择要删除的key:

noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
allkeys-random:对全体key ,随机进行淘汰。
volatile-random:对设置了TTL的key ,随机进行淘汰。
allkeys-lru: 对全体key,基于LRU算法进行淘汰
volatile-lru:对设置了TTL的key,基于LRU算法进行淘汰
allkeys-lfu: 对全体key,基于LFU算法进行淘汰
volatile-lfu:对设置了TTL的key,基于LFU算法进行淘汰

LRU (Least Recently Used) 最近最少使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU(Least Frequently Used) 最少频率使用。会统计每个key的方问频率,值越小淘汰优先级越高。

分布式锁
使用场景:定时任务、抢单、幂等性场景

如何实现?
在redis中提供了一个命令setnx(SET if not exists)
由于redis是单线程的,用了命令之后,只有一个客户端对某一个key设置值,在没有过期或删除key的时候其它客户端是不能设置这个key的。

如何控制Redis实现分布式锁有效时长?
采用框架redisson实现的。
在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了。
还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自选不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。

redisson实现的分布式锁是可重入的吗?
是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。

redisson实现的分布式锁能解决主从一致性的问题吗?

不能解决,但是可以使用redisson提供的红锁来解决,但是这样的话,性能就太低了,如果业务中非要保证数据的强一致性,建议采用zookeeper实现的分布式锁。

Redis集群有哪些方案?

主从复制
master 写操作,slave 读操作,读写分离。
主从数据同步原理
主从全量同步
1.从节点请求主节点同步数据(replication id、 offset)
2.主节点判断是否是第一次请求,是第一次就与从节点同步版本信息 (replication id和offset)
3.主节点执行bgsave,生成rdb文件后,发送给从节点去执行
4.在rdb生成执行期间,主节点会以命令的方式记录到缓冲区(一个日志文件)
5.把生成之后的命令日志文件发送给从节点进行同步
主从增量同步
1.从节点请求主节点同步数据,主节点判断不是第一次请求,不是第一次就获取从节点的offset值
2.主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步

哨兵模式
保证Redis的高并发高可用 ,实现主从集群的自动故障恢复(监控、自动故障恢复、通知)

你们使用redis是单点还是集群,哪种集群
主从(1主1从)+哨兵就可以了。单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。

redis集群脑裂,该怎么解决呢?
集群脑裂是由于主节点和从节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到主节点,所以通过选举的方式提升了一个从节点为主,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在老的主节点那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将老的主节点降为从节点,这时再从新master同步数据,就会导致数据丢失。
解决:我们可以修改redis的配置,可以设置最少的从节点数量以及缩短主从数据同步的延迟时间,达不到要求就拒绝请求就可以避免大量的数据丢失。

分片集群
有什么作用?
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点

Redis分片集群中数据是怎么存储和读取的?
Redis分片集群引入了哈希槽的概念,Redis 集群有16384个哈希槽
将16384个插槽分配到不同的实例
读写数据:根据key的有效部分计算哈希值,对16384取余(有效部分,如果key前面有大括号,大括号的内容就是有效部分,如果没有,则以key本身做为有效部分)余数做为插槽,寻找插槽所在的实例

Redis是单线程的,但是为什么还那么快?
Redis是纯内存操作,执行速度非常快
采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题
使用I/0多路复用模型,非阴塞IO

能解释一下I/O多路复用模型?
1.I/0多路复用
是指利用单个线程来同时监听多个Socket,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的/0多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。

2.Redis网络模型
就是使用I/O多路复用结合事件的处理器来应对多个Socket请求
连接应答处理器
命令回复处理器,在Redis6.0之后,为了提升更好的性能,使用了多线程来处理回复事件
命令请求处理器,在Redis6.0之后,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程

相关文章:

Redis相关面试题

Redis的使用场景 根据自己简历上的业务进行回答 缓存 穿透、击穿、雪崩、双写一致、持久化、数据过期、淘汰策略 分布式锁 setnx redisson 缓存穿透:查询一个不存在的数据,数据库查不到数据也不会直接写入缓存,就会导致每次请求都查询数据库…...

数据库简介

1、数据库安装: rpm (redhat package manager) 也是个包管理工具: rpm -ivh 安装 rpm -e 表示卸载,卸载的时候有可能出现依赖的问题,可以用 --nodeps 忽略依赖卸载。 rpm -qa 搜索系统中安装的rpm的应用。 如果使用离线包,安装顺序不要乱。 m…...

腾讯云国际轻量应用服务器怎么使用呢?

腾讯云国际轻量应用服务器怎么使用呢?下面一起来了解一下: 1. 熟悉轻量应用服务器基础知识 ①什么是轻量应用服务器 TencentCloud Lighthouse? ②轻量应用服务器与云服务器 CVM 的区别是什么? ③为什么选择轻量应用服务器&#xf…...

arm环境cloudstack在vpc下创建虚拟机失败

一、环境说明 操作系统:openEuler 22.03CPU:Kunpeng-920,arm v8cloudstack:4.18libvirtd:6.2.0 二、问题描述 在UI上创建VPC后,平台会同时创建一个virtual router,此时virtual router有两个网…...

Linux上安装Keepalived,多台Nginx配置Keepalived(保姆级教程)

目录 一、yum安装 第一步:下载 第二步:编辑Keepalived配置文件(第一台) 第三步:编辑Keepalived配置文件(第二台) 第四步:我们在本机利用cmd ping一下 一、yum安装 第一步&…...

centos7 ‘xxx‘ is not in the sudoers file...

如题 执行命令输入密码后时报错: [sudo] password for admin (我的账户)原因,当前用户还没有加入到root的配置文件中。 解决 vim打开配置文件,如下: #切换到root用户 su #编辑配置文件 vim /etc/sudoe…...

Zebec Payroll :计划推出 WageLink On-Demand Pay,进军薪酬发放领域

“Zebec Protocol 生态旨以 Web3 的方式建立全新的公平秩序,基于其流支付体系构建的薪酬支付板块,就是解决问题的一把利刃”...

【2023】字节跳动 10 日心动计划——第三关

目录 1. 最长有效括号2. 有序数组的平方 1. 最长有效括号 🔗 原题链接:32. 最长有效括号 类似于有效的括号,考虑用栈来解决。 具体来讲,我们始终保持栈底元素为当前已经遍历过的元素中「最后一个没有被匹配的右括号的下标」&…...

【无网络】win10更新后无法联网,有线无线都无法连接,且打开网络与Internet闪退

win10更新后无法联网,有线无线都无法连接,且打开网络与Internet闪退 法1 重新配置网络法2 更新驱动法3 修改注册表编辑器法4 重装系统 自从昨晚点了更新与重启后,今天电脑就再也不听话了,变着花样地连不上网。 检查路由器&#xf…...

HTML <script> 标签

实例 在 HTML 页面中插入一段 JavaScript: <script type="text/javascript"> document.write("Hello World!") </script>(在本页底部可以找到更多实例) 定义和用法 <script> 标签用于定义客户端脚本,比如 JavaScript。 script …...

FPGA----UltraScale+系列的PS侧与PL侧通过AXI-HP交互(全网唯一最详)附带AXI4协议校验IP使用方法

1、之前写过一篇关于ZYNQ系列通用的PS侧与PL侧通过AXI-HP通道的文档&#xff0c;下面是链接。 FPGA----ZCU106基于axi-hp通道的pl与ps数据交互&#xff08;全网唯一最详&#xff09;_zcu106调试_发光的沙子的博客-CSDN博客大家好&#xff0c;今天给大家带来的内容是&#xff0…...

Unity小游戏——迷你拼图

游戏展示 拼图演示 资源&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1BGeSmRCO_WZRUyl3MxefGw 提取码&#xff1a;0n4a 一、玩法介绍 排列拼图碎片&#xff0c;拼出最后的图案。可以点住碎片的任意位置拖动&#xff1b;点击"重来"按钮&#xff0c;可以…...

三 动手学深度学习v2 —— Softmax回归+损失函数+图片分类数据集

三 动手学深度学习v2 —— Softmax回归损失函数图片分类数据集 目录: softmax回归损失函数 1. softmax回归 回归vs分类: 回归估计一个连续值分类预测一个离散类别 从回归到多类分类 回归 单连续数值输出自然区间R跟真实值的误差作为损失 分类 通常多个输出输出i是预测为第…...

Stable Diffusion 使用教程

环境说明&#xff1a; stable diffusion version: v1.5.1python: 3.10.6torch: 2.0.1cu118xformers: N/Agradio: 3.32.0 1. 下载 webui 下载地址&#xff1a; GitHub stable-diffusion-webui 下载 根据自己的情况去下载&#xff1a; 最好是 N 卡&#xff1a;&#xff08;我的…...

在线考试系统springboot学生试卷问答管理java jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 在线考试系统springboot 系统有2权限&#xff1a;管理…...

创建vue-cli(脚手架搭建)

目录 功能 需要的环境 使用HbuilderX快速搭建一个vue-cli项目 组件路由 element-ui vue-cli 官方提供的一个脚手架&#xff0c;用于快速生成一个 vue 的项目模板&#xff1b;预先定义 好的目录结构及基础代码&#xff0c;就好比咱们在创建 Maven 项目时可以选择创建一个 骨…...

【单调栈part02】| 503.下一个更大元素||、42.接雨水

&#x1f388;LeetCode503.下一个更大元素|| 链接&#xff1a;503.下一个更大元素|| 给定一个循环数组 nums &#xff08; nums[nums.length - 1] 的下一个元素是 nums[0] &#xff09;&#xff0c;返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按…...

Java——如何使用Stream替换掉List<Student>中符合要求的元素

使用Stream替换掉List中符合要求的元素 要使用Stream流替换掉List中符合特定条件的元素&#xff0c;您可以使用Stream的map()方法对每个元素进行映射&#xff0c;并使用collect()方法将映射后的元素收集到一个新的List中。 示例代码&#xff1a; import java.util.ArrayList; …...

gin 框架中的 gin.Context

〇、前言 Context 是 gin 中最重要的部分。 例如&#xff0c;它允许我们在中间件之间传递变量、管理流程、验证请求的 JSON 并呈现 JSON 响应。 Context 中封装了原生的 Go HTTP 请求和响应对象&#xff0c;同时还提供了一些方法&#xff0c;用于获取请求和响应的信息、设置响…...

新版chrome浏览器恢复下载的时候恢复底栏提示

近日&#xff0c;谷歌对其Chrome浏览器进行了更新&#xff0c;为所有桌面系统的Chrome浏览器增加了位于地址栏右侧的“下载”气泡&#xff0c;并同时取消了原有的底部下载栏。 谷歌表示&#xff0c;这次更新的目的是为了让用户更方便地与最近下载的文件进行交互。 然而&#x…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...