当前位置: 首页 > news >正文

每日一题——回文链表

回文链表

题目链接

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GvuT2cBE-1691217006189)(C:/Users/HUASHUO/AppData/Roaming/Typora/typora-user-images/image-20230805111025312.png)]

回文结构即字符串正序逆序完全一致,如“1 2 3 4 3 2 1”,那么我们就要想办法同时比较链表头和链表尾的元素,看其是否相等。

下面介绍一种最常用的方法:


思路

如果我们仔细观察回文结构,就会得到一个结论:

将一个回文结构从正中间分隔,再将后半部分逆序,那么前半部分就一定等于后半部分。

我们可以分链表长度为奇数和偶数讨论:

当长度为偶数:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rJGE5AkL-1691217006190)(C:/Users/HUASHUO/AppData/Roaming/Typora/typora-user-images/image-20230805132642866.png)]

当长度为奇数:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Tnzqfbdq-1691217006190)(C:/Users/HUASHUO/AppData/Roaming/Typora/typora-user-images/image-20230805132749391.png)]

  • 那么**,第一步就先要得到链表的中间节点。我们可以用快慢指针**来实现:

定义两个指针fast、slow,同时指向链表头,slow每次走一个,fast每次走两个节点,当fast->next == NULL 或者 fast == NULL时,slow就走到中间节点了

struct ListNode* slow = head;
struct ListNode* fast = head;while (fast && fast->next)
{slow = slow->next;fast = fast->next->next;
}
  • 第二步,就是反转以slow节点为头的链表,如果对单链表反转还不太了解的朋友,建议先看看👉反转单链表
struct ListNode* reverseList(struct ListNode* head)
{if (head == NULL)return NULL;struct ListNode* newHead = (struct ListNode*)malloc(sizeof(struct ListNode));newHead->next = head;struct ListNode* cur = head;while (cur->next){struct ListNode* curNext = cur->next;cur->next = curNext->next;curNext->next = newHead->next;newHead->next = curNext;}struct ListNode* retHead = newHead->next;free(newHead);return retHead;
}
  • 第三步,我们用指针mid来接受slow后链表反转过后的头,接下来,从原来链表的头和mid开始比较,只要遇到不相等的情况,就返回false,否则返回true
struct ListNode* mid = reverseList(slow->next);
struct ListNode* cur1 = head;
struct ListNode* cur2 = mid;while (cur1 && cur2)
{if (cur1->val != cur2->val){return false;}cur1 = cur1->next;cur2 = cur2->next;
}return true;
  • 最后一步,**在返回之前,需要将链表还原,**毕竟在现实生活中,没有人想再调用这个函数时改变原来的链表结构。但是,如果我们就按上面的操作进行还原,那么就会出现一系列的问题,我们拿下图说明

判断过后,链表的结构是这样的:

如果我们要将链表还原,那么问号处的节点的后面应该链接到reverseList(mid)的返回值,但问题是之前我们并没有保存问号处的节点。所以,我们可以对找到链表中间节点这一操作进行改进:

struct ListNode* slow = head;
struct ListNode* fast = head;while (fast->next && fast->next->next)
{slow = slow->next;fast = fast->next->next;
}

这样slow就会停留在问号处的位置,反转链表的时候就反转以slow->next为头的链表就行了

实现代码

struct ListNode* reverseList(struct ListNode* head)	//反转链表
{if (head == NULL)return NULL;struct ListNode* newHead = (struct ListNode*)malloc(sizeof(struct ListNode));newHead->next = head;struct ListNode* cur = head;while (cur->next){struct ListNode* curNext = cur->next;cur->next = curNext->next;curNext->next = newHead->next;newHead->next = curNext;}struct ListNode* retHead = newHead->next;free(newHead);return retHead;
}bool isPalindrome(struct ListNode* head){struct ListNode* slow = head;struct ListNode* fast = head;while (fast->next && fast->next->next)	//找到中间节点的前一个节点{slow = slow->next;fast = fast->next->next;}//反转以中间节点为头的链表//将返回值赋给midstruct ListNode* mid = reverseList(slow->next);	struct ListNode* cur1 = head;struct ListNode* cur2 = mid;bool ret = true;	//设置返回值while (cur1 && cur2){if (cur1->val != cur2->val){ret = false;	//只要出现不相等的情况,就将返回值设为false,推出比较break;}cur1 = cur1->next;cur2 = cur2->next;}//还原链表mid = reverseList(mid);slow->next = mid;//返回return ret;
}

相关文章:

每日一题——回文链表

回文链表 题目链接 回文结构即字符串正序逆序完全一致,如“1 2 3 4 3 2 1”,那么我们就要想办法同时比较链表头和链表尾的元素,看其是否相等。 下面介绍一种最常用的方法: 思路 如果我们仔细观察回文结构,就会得到一…...

OPENCV C++(一) 二进制和灰度原理 处理每个像素点值的方法

#include <opencv2/opencv.hpp> using namespace std; using namespace cv;必须包含的头文件&#xff01; 才能开始编写代码 读取相片 一般来说加个保护程序 不至于出error和卡死 Mat image imread("test.webp"); //存放自己图像的路径 if (image.empty()){p…...

Python GUI编程(Tkinter)

Python GUI编程(Tkinter) Python 提供了多个图形开发界面的库&#xff0c;几个常用 Python GUI 库如下&#xff1a; Tkinter&#xff1a; Tkinter 模块(Tk 接口)是 Python 的标准 Tk GUI 工具包的接口 .Tk 和 Tkinter 可以在大多数的 Unix 平台下使用,同样可以应用在 Windows …...

K8S简介

目录 前言K8S 简介K8S 是什么作用Kubernetes 主要功能如下&#xff1a;Kubernetes 集群架构与组件 核心组件Master 组件Kube-apiserverKube-controller-managerKube-scheduler配置存储中心 etcd Node 组件KubeletKube-Proxydocker 或 rocket Kubernetes 核心概念PodPod控制器La…...

策略模式——算法的封装与切换

1、简介 1.1、概述 在软件开发中&#xff0c;常常会遇到这种情况&#xff0c;实现某一个功能有多条途径。每一条途径对应一种算法&#xff0c;此时可以使用一种设计模式来实现灵活地选择解决途径&#xff0c;也能够方便地增加新的解决途径。为了适应算法灵活性而产生的设计模…...

c++转换构造,拷贝构造,operator=

c转换构造&#xff0c;拷贝构造&#xff0c;operator 一.转换构造 定义一个类 class CTest { public:int m_a;CTest(int m_a):m_a(0){} };在主函数中定义对象 CTest tes1(1); CTest tes2 5;//我们发现这种定义对象的方式不符合常理&#xff0c;这里其实是发生了隐式类型转…...

支付宝蜻蜓设备abs调试

蜻蜓设备系统日志调试 1、蜻蜓设备进入开发者模式 长按关键键直到屏幕上出现设置按钮&#xff0c;点击设置按钮&#xff0c;选择关于本机&#xff0c;找到系统版本&#xff0c;连续点击8次&#xff0c;选择进入调试模式 2、找到小程序容器&#xff0c;连续点击8次&#xff0…...

论memset的时间代价

论memset的时间代价 众所周知&#xff0c;memset是一个常用的数组赋值方式&#xff0c;几乎每个OI player全都使用过&#xff0c;但是这个函数从来不要脸&#xff0c;也不给你脸。 大家耳顺能详的几个例子&#xff1a; ①memset(a,0,sizeof(a));把a全赋值成0。 ②memset(a,…...

linux下绑定进程到指定CPU的操作方法

taskset简介 # taskset Usage: taskset [options] [mask | cpu-list] [pid|cmd [args...]] Show or change the CPU affinity of a process. Options: -a, --all-tasks operate on all the tasks (threads) for a given pid -p, --pid operate on ex…...

springboot+maven插件调用mybatis generator自动生成对应的mybatis.xml文件和java类

mybatis最繁琐的事就是sql语句和实体类&#xff0c;sql语句写在java文件里很难看&#xff0c;字段多的表一开始写感觉阻力很大&#xff0c;没有耐心&#xff0c;自动生成便成了最称心的做法。自动生成xml文件&#xff0c;dao接口&#xff0c;实体类&#xff0c;虽一直感觉不太优…...

C# 根据前台传入实体名称,动态查询数据

前言&#xff1a; 项目中时不时遇到查字典表等数据&#xff0c;只需要返回数据&#xff0c;不需要写其他业务&#xff0c;每个字典表可能都需要写一个接口给前端调用&#xff0c;比较麻烦&#xff0c;所以采用下面这种方式&#xff0c;前端只需传入实体名称即可&#xff0c;例…...

Netty入门学习

目录 为什么要学习nettynetty学习导图学习netty前需要知道的知识I/O模型主要I/O模型 netty框架的整体结构netty的逻辑架构网络通信层事件调度层服务编排层 为什么要学习netty Netty是由JBOSS提供的一个Java开源框架&#xff0c;现为Github上的独立项目。Netty本质是一个NIO框架…...

代客泊车对HUT功能交互规范

目录 1. 版本记录... 7 2. 文档范围和控制... 8 2.1 目的/范围... 8 2.2 文档冲突... 8 2.3 文档授权... 8 2.4 文档更改控制... 8 3. 系统组成... 9 3.1 IPAS系统&#xff08;环视和超声波雷达&#xff09;...…...

mysql的update_time

CREATE TABLE users (id INT AUTO_INCREMENT PRIMARY KEY,name VARCHAR(50) NOT NULL,age INT,update_time TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 更新时间 );具体解释如下&#xff1a; DEFAULT CURRENT_TIMESTAMP: 这部分表示当插入…...

避免安装这5种软件,手机广告频繁弹窗且性能下降

在我们使用手机的日常生活中&#xff0c;选择合适的应用软件对于保持良好的使用体验至关重要。然而&#xff0c;有些软件可能会给我们带来不必要的麻烦和困扰。特别是那些频繁弹窗广告、导致手机性能下降的应用程序&#xff0c;我们应该尽量避免安装它们。 首先第一种&#xf…...

kafka-事务

1. 事务的5个API // 1初始化事务 void initTransactions();// 2开启事务 void beginTransaction() throws ProducerFencedException;// 3在事务内提交已经消费的偏移量&#xff08;主要用于消费者&#xff09; void sendOffsetsToTransaction(Map<TopicPartition, OffsetAn…...

【安装】阿里云轻量服务器安装Ubuntu图形化界面(端口号/灰屏问题)

阿里云官网链接 https://help.aliyun.com/zh/simple-application-server/use-cases/use-vnc-to-build-guis-on-ubuntu-18-04-and-20-04 网上搜了很多教程&#xff0c;但是我没在界面看到有vnc连接&#xff0c;后面才发现官网有教程。 其实官网很详细了&#xff0c;不过这里还是…...

Python 扩展 快捷贴士:os模块下的创建目录的方式

Python3 os.makedirs() 方法 概述 os.makedirs() 方法用于递归创建多层目录。 如果子目录创建失败或者已经存在&#xff0c;会抛出一个 OSError 的异常&#xff0c;Windows上Error 183 即为目录已经存在的异常错误。 如果第一个参数 path 只有一级&#xff0c;即只创建一层目…...

Hi3798MV200 恩兔N2 NS-1 (一): 设备介绍和刷机说明

目录 Hi3798MV200 恩兔N2 NS-1 (一): 设备介绍和刷机说明Hi3798MV200 恩兔N2 NS-1 (二): HiNAS海纳思使用和修改Hi3798MV200 恩兔N2 NS-1 (三): 制作 Ubuntu rootfsHi3798MV200 恩兔N2 NS-1 (四): 制作 Debian rootfs 介绍 恩兔N2是一个家庭存储的系列产品, NS-1 是其中体积…...

redis缓存雪崩和缓存击穿

目录 缓存雪崩 解决方案&#xff1a; 缓存击穿 ​解决方案 缓存雪崩 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机&#xff0c;导致大量请求到达数据库&#xff0c;带来巨大压力。 解决方案&#xff1a; u 给不同的 Key 的 TTL 添加随机值 u 利用 Redis …...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...