【C语言每日一题】——猜名次
【C语言每日一题】——猜名次😎
- 前言🙌
- 猜名次🙌
- 解题思路分享:😍
- 解题源码分享:😍
- 总结撒花💞

😎博客昵称:博客小梦
😊最喜欢的座右铭:全神贯注的上吧!!!
😊作者简介:一名热爱C/C++,算法等技术、喜爱运动、热爱K歌、敢于追梦的小博主!
😘博主小留言:哈喽!😄各位CSDN的uu们,我是你的博客好友小梦,希望我的文章可以给您带来一定的帮助,话不多说,文章推上!欢迎大家在评论区唠嗑指正,觉得好的话别忘了一键三连哦!😘
前言🙌
哈喽各位友友们😊,我今天又学到了很多有趣的知识,现在迫不及待的想和大家分享一下!😘我仅已此文,和大家分享【C语言每日一题】——猜名次~ 将现实中的生活问题转化为代码讲述,非常有意思的一到题目~ 都是精华内容,可不要错过哟!!!😍😍😍
猜名次🙌
猜名次
题目描述:5位运动员参加了10米台跳水比赛,有人让他们预测比赛结果:
A选手说:B第二,我第三;
B选手说:我第二,E第四;
C选手说:我第一,D第二;
D选手说:C最后,我第三;
E选手说:我第四,A第一;
比赛结束后,每位选手都说对了一半,请编程确定比赛的名次。
解题思路分享:😍
- 这是一道和十分有意思的题目。考虑到一共五个人,直接模拟推理有些太难,可以利用遍历所有可能性来解决。
- 将每个人从第1到第5来一遍,则一共会产生5^5种可能性,这个只需要一个5层循环即可搞定。
- 多看几遍五个人描述的话语和题目所给的提示。并用代码写出相应的 if ()中的判断语句 。
- 但是这样会导致一些不期望出现的结果出现,但是会出现两个人或者更多的人名次相同的情况,例如两个第1,三个第2这样的,所以即使满足了条件,也要查看一下五个人的名次是否重复。 所以在if的判断条件中将这些进行一个把控,将重复的情况进行一个筛选控制即可。
解题源码分享:😍
#include<stdio.h>int main(){int a = 0, b = 0, c = 0, d = 0, e = 0;for (int i = 1; i < 5; i++){a = i;for (int j = 1; j <= 5; j++){b = j;for (int k = 1; k <= 5; k++){c = k;for (int l = 1; l <= 5; l++){d = l;for (int m = 1; m <= 5; m++){e = m;if ((b == 2 || a == 3) &&( b == 2 || e == 4) && (c == 1 || d == 2 )&&(c == 5 || d == 3 )&&( e == 4 || a == 1) && (a != b) && (a != c)&& (a != d) && (a != e )&&( b != c) &&( b != d ) && (b != e) && (c!= d)&& (c != e )&& (d != e)){printf("a = %d,b = %d,c = %d. d = %d,e = %d\n",a,b,c,d,e);}}}}}}return 0;}
程序输出结果验证: 😊
然后我通过程序运行的结果和题目内容对比后,是符合题目要求的答案。 😍
总结撒花💞
本篇文章旨在分享C语言详解【C语言每日一题】——猜名次。希望大家通过阅读此文有所收获!但是我觉得我实现的这个算法的效率有点低,要用到五层循环,各位聪明的uu们有没有更高效的解题算法呢?有的话可以私信笨笨的小梦😊,教教俺!!!😘如果我写的有什么不好之处,请在文章下方给出你宝贵的意见😊。如果觉得我写的好的话请点个赞赞和关注哦~😘😘😘
相关文章:

【C语言每日一题】——猜名次
【C语言每日一题】——猜名次😎前言🙌猜名次🙌解题思路分享:😍解题源码分享:😍总结撒花💞😎博客昵称:博客小梦 😊最喜欢的座右铭:全神…...

Agilent E4982A、Keysight E4982A、LCR 表,1 MHz 至 3 GHz
Agilent E4982A、Keysight E4982A、HP E4982A LCR 表,1 MHz 至 3 GHz 产品概览 KEYSIGHT E4982A(安捷伦) Keysight E4982A LCR 表为需要高频(1 MHz 至 3 GHz)阻抗测试的无源元件制造行业提供一流的性能,…...
SAP 系统的配置传输
在SAP项目的实施过程中,经常会遇到关于配置传输的问题。即我们在某个client下面做系统配置,配好了之后再传到其他系统之中。 配置传输分为两种情况:同服务器配置传输,异服务器配置传输。同服务器配置传输: 在DEV配置cl…...
华为OD机试 - 喊七(Python)
喊七 题目 喊 7,是一个传统的聚会游戏, N 个人围成一圈,按顺时针从1 - 7编号, 编号为1的人从1开始喊数, 下一个人喊得数字是上一个人喊得数字+1, 但是当将要喊出数字7的倍数或者含有7的话, 不能喊出,而是要喊过。 假定N个人都没有失误。 当喊道数字k时, 可以统计每…...

Docker下快速搭建RabbitMQ单例及集群
引子生命在于折腾,为上数据实时化用到了消息传送的内容,当时也和总公司人员商量选型,kafka不能区分分公司就暂定用了RbtMQ刚好个人也在研究容器及分布式部署相关内容就在docker上实践单机 docker(要想快 先看问题 避免踩坑&#x…...
python代码写开心消消乐
♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放,树高千尺,落叶归根人生不易,人间真情 目录 一.python是什么 二.游戏代码效果呈现 三.主代...

【郭东白架构课 模块一:生存法则】09|法则四:为什么要顺应技术的生命周期?
你好,我是郭东白。今天我们来讲架构师的第四条生存法则,那就是尊重技术的生命周期。 人类的各种活动都要遵循事物的客观生命周期。不论是农业社会种田打渔,还是资本社会投资创业,行动太早或太晚,都会颗粒无收。技术也…...

Linux之进程控制
一.进程创建 1.1 fork函数 我们创建进程的方式有./xxx和fork()两种 在linux中fork函数时非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。 #include <unistd.h> pid_t fork(void); 返回值:自进程…...

SpringBoot社区版专业版带你配置热部署
💟💟前言 友友们大家好,我是你们的小王同学😗😗 今天给大家打来的是 SpringBoot社区版专业版带你配置热部署 希望能给大家带来有用的知识 觉得小王写的不错的话麻烦动动小手 点赞👍 收藏⭐ 评论…...
影响AFE采样精度的因素有哪些?
**AFE(Analog Front End)**是模拟前端电路的缩写,它是模拟信号传感器和数字信号处理器之间的连接点。AFE采样精度是指模拟信号被数字化后的准确度,对于很多电子设备来说,这是一个至关重要的性能指标。本文将介绍影响AF…...
mysqlbackup备份报error:redo log was overwritten
问题原因 备份时redo log被覆盖 解决方案 方法1:增加innodb_log_file_size、innodb_log_files_in_group大小,需要重启数据库 vi my.cnf innodb_log_file_size 2G innodb_log_files_in_group 4 方法2: 动态配置redo log archive,不需要重启…...
Android支持库
# 支持库 注意:Android 9.0(API 级别 28)发布后,新版支持库 AndroidX 也随之诞生,它属于 Jetpack。除了现有的支持库,AndroidX 库还包含最新的 Jetpack 组件。 您可以继续使用此支持库以往的工件(这里指的是版本 27 及更早版本,且已打包为 android.support.*)在 Googl…...

Vue:filters过滤器
日期、时间格式化是Vue前端项目中较为常遇到的一个需求点,此处,围绕Vue的过滤器来介绍如何更为优雅的解决此类需求。 过滤器filters使用注意点 Vue允许开发者自定义过滤器,可以实现一些常见的文本格式化等需求。 使用时要注意的点在于&#…...

Windows环境下安装和配置Gradle
1. 概述 Gradle是Google公司基于JVM开发的一款项目构建工具,支持Maven,JCenter多种第三方仓库,支持传递性依赖管理,使用更加简洁和支持多种语言的build脚步文件,更多详情可以参阅Gradle官网 2. 下载 由于Gradle与S…...

数据结构时间空间复杂度笔记
🕺作者: 迷茫的启明星 本篇内容:数据结构时间空间复杂度笔记 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇家人们,码字不易,你的👍点赞🙌收藏❤…...

基于注意力的知识蒸馏Attention Transfer原理与代码解析
paper:Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfercode:https://github.com/megvii-research/mdistiller/blob/master/mdistiller/distillers/AT.py背景一个流行的假设是存…...

利尔达在北交所上市:总市值突破29亿元,叶文光为董事长
2月17日,利尔达科技集团股份有限公司(下称“利尔达”,BJ:832149)在北京证券交易所上市。本次上市,利尔达的发行价格为5.00元/股,发行数量为1980万股,发行市盈率为12.29倍,募资总额为…...

C#操作字符串方法 [万余字总结 · 详细]
C#操作字符串方法总结C#常用字符串函数大全C#常用字符串操作方法C#操作字符串方法总结C#常用字符串函数大全 Compare 比较字符串的内容,考虑文化背景(场所),确定某些字符是否相等 CompareOrdinal 与Compare一样,但不考虑文化背景 Format 格…...

极兔一面:10亿级ES海量搜索狂飙10倍,该怎么办?
背景说明: ES高性能全文索引,如果不会用,或者没有用过,在面试中,会非常吃亏。 所以ES的实操和底层原理,大家要好好准备。 另外,ES调优是一个非常、非常核心的面试知识点,大家要非…...

【Mysql基础 —— SQL语句(一)】
文章目录概述使用启动/停止mysql服务连接mysql客户端数据模型SQLSQL语句分类DDL数据库操作表操作查询创建数据类型修改删除DML添加数据修改数据删除数据DQL基础查询条件查询聚合函数分组查询排序查询分页查询执行顺序DCL管理用户权限控制概述 数据库(Database&#…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...

aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...