当前位置: 首页 > news >正文

LeetCode·每日一题·1223.掷骰子模拟·记忆化搜索

作者:小迅

链接:https://leetcode.cn/problems/dice-roll-simulation/solutions/2103471/ji-yi-hua-sou-suo-zhu-shi-chao-ji-xiang-xlfcs/

来源:力扣(LeetCode)

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

题目

示例

思路

题意 -> 给定一个字符串规定相同类型的骰子连续出现的最大值,返回投掷 n 次后能出现的 骰数 的不同序列个数

题目说是 骰子模拟,那么直接按照题目意思进行模拟呢?

想一想,掷了一个骰子(设值为 x)后,会发生什么情况?

既然题目有 rollMax 的限制,那么分类讨论:

  • 如果和上一个骰子值相同,那么 x 的连续出现次数不能超过 rollMax[x];

  • 如果不同,那么可以重置连续出现次数为 1。

关键词提取:「上一个骰子值」「连续出现次数」

那么在回溯中就需要知道(为了方便后面转成递推,定义成剩余):

  • 剩余掷骰子的次数,用 i 表示;

  • 上一个骰子值,用 last 表示;

  • last 的剩余连续出现次数,用 left 表示。

这样就确定了递归的参数,递归的返回值就是骰子序列个数。

要递归到哪里去呢?我们可以用回溯中的经典技巧「枚举选哪个」:

  • 如果选的骰子值和上一个相同,且 left>0,那么递归到 (i−1,last,left−1);

  • 如果不同,设为 j,那么递归到 (i−1,j,rollMax[j]−1)。

枚举 j=0,1,2,3,4,5,把递归后的结果相加,就是当前 (i,last,left) 的答案。

递归到 n=0 时结束,返回 1,表示找到了一个合法骰子序列

整个回溯过程是有大量重复递归调用的。由于递归函数没有副作用,无论多少次调用 dfs(i,last,left) 算出来的结果都是一样的,因此可以用记忆化搜索来优化:

  • 如果一个状态(递归入参)是第一次遇到,那么可以在返回前,把状态及其结果记到一个 cache 数组(或者哈希表)中;

  • 如果一个状态不是第一次遇到,那么直接返回 cache 中保存的结果。

cache[n][x][y] - n 表示 当前剩余投掷次数, x 表示上一次投掷骰子值, y表示 上一次投掷骰子值 剩余的出现次数;

为啥可以到达记忆化效果,因为当前投掷结果的有效性只和上一次的投掷结果相关,「先掷 1 后掷 3」和「先掷 2 后掷 3」,都会递归到 dfs(n−2,3,rollMax[3]−1)。

如何转动态规划 :

  • 可以去掉递归中的「递」,只保留「归」的部分,即自底向上计算。

做法:

  • dfs 改成 f 数组;

  • 递归改成循环(每个参数都对应一层循环);

  • 递归边界改成 f 数组的初始值。

代码注释超级详细

代码

const long MOD = 1e9 + 7;int dfs(int i, int last, int *rollMax, int left, int (*cache)[6][15])
{if (i == 0) return 1;int *c = (int *)&(cache[i][last][left]);if (*c >= 0) return *c;//如果之前算过就不需要重新计算long res = 0;for (int j = 0; j < 6; ++j)if (j != last) res += dfs(i - 1, j, rollMax, rollMax[j] - 1, cache);else if (left) res += dfs(i - 1, j, rollMax, left - 1, cache);return *c = res % MOD;
}int dieSimulator(int n, int* rollMax, int rollMaxSize){int cache[n][6][15];//记忆化数组memset(cache, -1, sizeof(cache)); // -1 表示没有访问过long ans = 0;for (int j = 0; j < 6; ++j)//枚举初始状态0-6ans += dfs(n - 1, j, rollMax, rollMax[j] - 1, cache);return ans % MOD;
}作者:小迅
链接:https://leetcode.cn/problems/dice-roll-simulation/solutions/2103471/ji-yi-hua-sou-suo-zhu-shi-chao-ji-xiang-xlfcs/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {const long MOD = 1e9 + 7;
public:int dieSimulator(int n, vector<int> &rollMax) {int m = rollMax.size(), f[n][m][15];for (int j = 0; j < m; ++j)for (int k = 0; k < rollMax[j]; ++k)f[0][j][k] = 1;for (int i = 1; i < n; ++i)for (int last = 0; last < m; ++last)for (int left = 0; left < rollMax[last]; ++left) {long res = 0;for (int j = 0; j < m; ++j)if (j != last) res += f[i - 1][j][rollMax[j] - 1];else if (left) res += f[i - 1][j][left - 1];f[i][last][left] = res % MOD;}long ans = 0;for (int j = 0; j < m; ++j)ans += f[n - 1][j][rollMax[j] - 1];return ans % MOD;}
};

相关文章:

LeetCode·每日一题·1223.掷骰子模拟·记忆化搜索

作者&#xff1a;小迅链接&#xff1a;https://leetcode.cn/problems/dice-roll-simulation/solutions/2103471/ji-yi-hua-sou-suo-zhu-shi-chao-ji-xiang-xlfcs/来源&#xff1a;力扣&#xff08;LeetCode&#xff09;著作权归作者所有。商业转载请联系作者获得授权&#xff0…...

【GPLT 二阶题目集】L2-043 龙龙送外卖

参考地址&#xff1a;AcWing 4474. 龙龙送外卖&#xff08;杂题选讲&#xff09; 作者&#xff1a;yxc 感谢y总&#xff01; 龙龙是“饱了呀”外卖软件的注册骑手&#xff0c;负责送帕特小区的外卖。帕特小区的构造非常特别&#xff0c;都是双向道路且没有构成环 —— 你可以…...

Maven:基础知识

Maven概念图生命周期目录工程创建测试常用命令COMPILATION ERROR : 不再支持目标选项 5。请使用 7 或更高版本。问题解决pom.xml文件properties配置示例scope配置详解概念图 依赖管理构建项目Maven 的底层核心实现项目的构建和管理必须通过插件完成&#xff0c;但插件本身并不包…...

Web 框架 Flask 快速入门(一)flask基础与模板

前言 课程地址&#xff1a;Python Web 框架 Flask 快速入门 文章目录前言&#x1f334; Flask基础和模板&#x1f337; 一个简单的flask程序&#x1f33c; 模板的使用&#x1f334; Flask基础和模板 1、web框架的作用 避免重复造轮子&#xff0c;app程序不必关心于服务器的沟…...

1CN/Jaccard/PA/AA/RA/Katz/PageRank/SimRank

common neighbors&#xff08;CN&#xff09; 公共邻居的数量。 Jaccard 用于比较有限样本集之间的相似性与差异性。Jaccard系数值越大&#xff0c;样本相似度越高。 preferential attachment&#xff08;PA&#xff09; 节点倾向于连接到节点度较高的节点上&#xff0c;&…...

YOLOv5-Backbone模块实现

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f366; 参考文章地址&#xff1a; 365天深度学习训练营-第P8周&#xff1a;YOLOv5-Backbone模块实现&#x1f356; 作者&#xff1a;K同学啊一、前期准备1.设置GPUimport torch from torch impor…...

【C语言】程序环境和预处理

&#x1f307;个人主页&#xff1a;平凡的小苏 &#x1f4da;学习格言&#xff1a;别人可以拷贝我的模式&#xff0c;但不能拷贝我不断往前的激情 &#x1f6f8;C语言专栏&#xff1a;https://blog.csdn.net/vhhhbb/category_12174730.html 小苏希望大家能从这篇文章中收获到许…...

9.关系查询处理和查询优化

其他章节索引 梳理 名词解释 代数优化&#xff1a;是指关系代数表达式的优化&#xff0c;也即按照一定规则&#xff0c;通过对关系代数表达式进行等价变换&#xff0c;改变代数表达式中操作的次序和组合&#xff0c;使查询更高效物理优化&#xff1a;是指存取路径和底层操作算…...

计算机组成原理(三)

5.掌握定点数的表示和应用&#xff08;主要是无符号数和有符号数的表示、机器数的定点表示、数的机器码表示&#xff09;&#xff1b; 定点数&#xff1a;小数点位置固定不变。   定点小数&#xff1a;小数点固定在数值位与符号位之间&#xff1b;   定点整数&#xff1a;小…...

C. Least Prefix Sum codeforces每日一题

&#x1f680;前言 &#x1f680; 大家好啊&#xff0c;这里是幸麟 &#x1f9e9; 一名普通的大学牲&#xff0c;最近在学习算法 &#x1f9e9;每日一题的话难度的话是根据博主水平来找的 &#x1f9e9;所以可能难度比较低&#xff0c;以后会慢慢提高难度的 &#x1f9e9;此题标…...

ASEMI三相整流模块MDS100-16图片,MDS100-16尺寸

编辑-Z ASEMI三相整流模块MDS100-16参数&#xff1a; 型号&#xff1a;MDS100-16 最大重复峰值反向电压&#xff08;VRRM&#xff09;&#xff1a;1600V 最大RMS电桥输入电压&#xff08;VRMS&#xff09;&#xff1a;1700V 最大平均正向整流输出电流&#xff08;IF&#…...

【第37天】斐波那契数列与爬楼梯 | 迭代的鼻祖,递推与记忆化

本文已收录于专栏&#x1f338;《Java入门一百例》&#x1f338;学习指引序、专栏前言一、递推与记忆化二、【例题1】1、题目描述2、解题思路3、模板代码4、代码解析5.原题链接三、【例题1】1、题目描述2.解题思路3、模板代码4、代码解析5、原题链接三、推荐专栏四、课后习题序…...

Map集合

Map集合 Map接口的简介 Map用于保存具有映射关系的数据&#xff0c;Map里保存着两组数据&#xff1a;key和value&#xff0c;它们都可以使任何引用类型的数据&#xff0c;但key不能重复。所以通过指定的key就可以取出对应的value。 Map 没有继承 Collection 接口&#xff0c…...

PyQt5编程扩展 3.2 资源文件的使用

目录 本例运行效果&#xff1a; 设计Qt窗体 建立项目 放一个Group Box 放三个Label 放一个Horizontal Slider 放两个Line Edit 层次结构 布局 放一个Group Box 放两个Label 放两个Line Edit 放一个Push Button 层次结构 布局 放一个frame 层次结构 布局 窗体…...

Linux系统之文件共享目录设置方法

Linux系统之文件共享目录设置方法一、本次实践目的二、检查本地系统环境1.检查系统版本2.检查系统内核三、创建相关用户及用户组1.创建共享目录2.创建测试用户账号3.创建用户组4.设置用户的属组5.查看admin和IT用户组成员6.查看所有用户信息四、共享目录权限设置1.设置/data/so…...

上海亚商投顾:三大指数均涨超1% 芯片板块集体大涨

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。市场情绪三大指数今日低开高走&#xff0c;午后集体涨超1%&#xff0c;创业板指盘中涨超1.7%。芯片板块集体大涨&#xff0c;…...

Harbor私有仓库部署与管理

目录 前言 一、Harbor概述 二、Harbor 的特性 三、Harbor的构成 四、Harbor构建Docker私有仓库 1、环境配置 2、案例需求 3、部署Harbor服务 3.1、部署docker compose服务 3.2 下载或上传Harbor安装程序 3.3、启动Harbor 3.4、查看Harbor启动镜像 4、物理机访问se…...

互联网架构之 “高可用” 详解

一、什么是高可用 高可用HA&#xff08;High Availability&#xff09;是分布式系统架构设计中必须考虑的因素之一&#xff0c;它通常是指&#xff0c;通过设计减少系统不能提供服务的时间。 假设系统一直能够提供服务&#xff0c;我们说系统的可用性是100%。 如果系统每运行…...

分布式高级篇4 —— 商城业务(2)

一、订单服务1、订单基本概念2、订单基本构成3、订单状态4、订单流程5、配置拦截器拦截订单请求6、订单确认页模型抽取7、订单确认页vo封装8、Feign 远程调用请求头丢失问题\*\*\*\*\* 惨痛教训9、Feign 异步调用请求头丢失问题10、查看库存状态11、模拟计算运费12、接口幂等性…...

二分查找基本原理

二分查找基本原理1.二分查找1.1 基本概念1.2 二分查找查找步骤1.2.1 中间索引不能整除&#xff0c;取整数作为中间索引1.2.2 索引不能整除&#xff0c;整数1作为中间索引1.3 二分查找大O记法表示2. 二分查找代码实现1.二分查找 1.1 基本概念 二分法(折半查找&#xff09;是一…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...