当前位置: 首页 > news >正文

MapTR论文笔记

MAPTR: STRUCTURED MODELING AND LEARNING FOR ONLINE VECTORIZED HD MAP CONSTRUCTION

目的

传统高精地图 通过一些离线的基于 SLAM 的方法生成,需要复杂的流程以及高昂的维护费用。基于 bev 分割的建图方法,缺少向量化 实例级的信息,比如说lane结构。为了获得向量化的 HD map,HDMapNet 将像素级的分割结果分组,需要复杂且耗时的后处理。VectorMapNet 将地图的元素表示成点序列,采用了层级式 coarse-to-fine 网络,并且利用了自回归的 decoder 预测 序列化的点集,需要较长的推理时间。
![[attachments/Pasted image 20230806170047.png]]
当前在线向量化的在线高清地图的构建方法的效率较低,无法应用到实时的场景。DETR 采用了简单的 encoder-decoder transformer 结构,实现了端到端的目标检测。本文的目的是设计一个 类似于 DETR 结构,高效的端到端的 高清地图的构建方法。

本文的主要贡献主要有两点:

  1. 对于地图元素的统一表示
  2. 针对这种统一表示给出了 一个端到端学习的网络结构

方法

地图元素表示

地图的元素可表示成 折线 和 多边形 两种类别。这两种都可以用 点集 表示。然而点集的排列方式不是唯一的,存在多种排列方式。比如说 折线,它的起点和终点是可以互换的,代表两种方向,对于一些方向不敏感的元素,比如说人行道或者 车道线,两种方向都是可以的。如下图所示:

如果让网络只学习某一种排列方式,是不合理的。因此本文对于每一个地图元素都给出了所有的排列组合方式,用于后续网络的训练。
对于折线,根据起点位置的不同,有两种排列方式。对于多边形,需要考虑两个因素: 起点的位置 以及 连接的顺序(顺时针 或 逆时针),这样可以产生多种排列方式。

在这里插入图片描述

匹配方法

和 DETR 一样,MapTR 同时预测 N 个地图元素,N 是一个较大的数字,比一般场景中地图元素的数量要大。
MapTR 中需要使用两种匹配方法以实现 网络预测的元素 和 gt 某个元素的某一个具体的排列方式的匹配。本文的匹配方法有两个层级:Instance-level Matching 以及 Point-level Matching。

Instance-level Matching

在训练时,我们需要把 网络预测的元素 和 gt 匹配起来,这里也是使用的匈牙利匹配算法。
预测元素 和 gt 的 cost 考虑两部分:
元素的类别 以及 位置。类别使用的是 Focal loss,位置的loss使用的是 关于点位置的距离函数。

Point-level Matching

在 实例级的匹配之后,我们已经拿到了 预测元素 和 gt 的匹配关系,然后我们还需要做 点级的 匹配。
预测的点集 会和 gt 排列组合 中 每一个 排列方法 计算 距离,选择距离最小的一个配对。这里使用的是曼哈顿距离。

训练的 loss

  • 分类 loss focal loss
  • point2point loss,曼哈顿距离
  • edge direction loss,point2point loss 只考虑了点,并没有考虑 和折线 和 多边形的 边。edge direction loss 加入了对 边方向的 监督。这里使用的是余弦相似度。
    边可以用向量来表示(空间中两个点的坐标相减)

网络结构

MapTR 结构还是比较直接的 使用的是 bev + transformer decoder 结构

在这里插入图片描述

相关资料

https://www.bilibili.com/video/BV1uh4y1X7Ah/?spm_id_from=333.337.search-card.all.click

相关文章:

MapTR论文笔记

MAPTR: STRUCTURED MODELING AND LEARNING FOR ONLINE VECTORIZED HD MAP CONSTRUCTION 目的 传统高精地图 通过一些离线的基于 SLAM 的方法生成,需要复杂的流程以及高昂的维护费用。基于 bev 分割的建图方法,缺少向量化 实例级的信息,比如…...

JS进阶-Day4

🥔:流水不争先争滔滔不绝 JS进阶-Day1——点击此处(作用域、函数、解构赋值等) JS进阶-Day2——点击此处(深入对象之构造函数、实例成员、静态成员等;内置构造函数之引用类型、包装类型等) JS进…...

【C语言】初阶完结练习题

🎈个人主页:库库的里昂 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏:C语言初阶 ✨其他专栏:代码小游戏 🤝希望作者的文章能对你有所帮助,有不足的地方请在评论…...

c++类与对象详解

c类与对象详解 对象类方法自定义类型类的特性this类的六个默认成员函数static成员友元内部类 对象 在C中&#xff0c;对象是类的实例。定义对象的语法为&#xff1a; <class_name> object_name;其中&#xff0c;class_name 是定义类时指定的类名&#xff0c;object_nam…...

I/O 函数/缓存和字节流、占位符、getchar(),putchar()

I/O 函数 C 语言提供了一些函数&#xff0c;用于与外部设备通信&#xff0c;称为输入输出函数&#xff0c;简称 I/O 函数。输入&#xff08;import&#xff09;指的是获取外部数据&#xff0c;输出&#xff08;export&#xff09;指的是向外部传递数据。 缓存和字节流 严格地…...

MySQL日期常见的函数

-- 获取当天日期 -- 2023-06-20 select curdate();-- 获取当天年月日时分秒 select now();-- 日期运算 -- 2024-06-20 17:04:17 select date_add(now(),interval 1 year);-- 日期比较 -- 0 select datediff(now(),now());-- 日期MySQL对于日期类型数据如何查询 -- 获取指定日期…...

Python获取CPU温度

本文的主要目的是演示如何借助 Python 中的 pythonnet 库读取和显示 CPU 温度。 Python获取CPU温度 根据您正在设计的应用程序类型&#xff0c;您可能希望监视运行该程序的机器的资源。 由于多种原因&#xff0c;可能会出现这种情况。 也许您需要您的程序在系统资源达到特定阈…...

后端整理(MySql)

1 事务 1.1 事务ACID原则 原子性&#xff08;Atomicity&#xff09; 事务的原子性指的是事务的操作&#xff0c;要么全部成功&#xff0c;要么全部失败回滚 一致性&#xff08;Consistency&#xff09; 事务的一致性是指事务必须使数据库从一个一致状态转变成另一个一致性…...

HashSet的详细介绍

一、HashSet整体介绍 HashSet 是 Java 中的一个集合类&#xff0c;它实现了 Set 接口&#xff0c;用于存储不重复的元素。它是基于哈希表的数据结构实现的。 HashSet 的特点如下&#xff1a; 不允许存储重复的元素&#xff1a;HashSet 中的元素是唯一的&#xff0c;如果尝试…...

【SCI征稿】JCR1区,中科院2区,有关大数据、人工智能、机器学习的应用研究均可

期刊简介&#xff1a; 【出版社】Elsevier 【影响因子】IF&#xff08;2022&#xff09;&#xff1a;6.5-7.0 【期刊分区】JCR1区&#xff0c;中科院2区 【检索情况】SCIE 在检&#xff0c;正刊 【参考周期】期刊部系统内提交&#xff0c;预计3-5个月左右录用&#xff0c;…...

【UE】AI导航,多个导航物体无法走到同一终点问题

如不需要开启导航物体的碰撞&#xff0c;则需要关闭Use RVOAvoidance 不然会导致多个导航物体无法到达同一个目标点&#xff0c;都在附近晃。无法结束寻路。 ue小白&#xff0c;判定导航终点的半径&#xff0c;没有找到。如果有大佬知道怎么设置请在评论区指出&#xff0c;谢…...

途游游戏 x 极狐GitLab “通关” DevOps :单元测试从无到优,覆盖率 0→80%

目录 4 个工具孤岛 → 极狐GitLab 全家桶&#xff0c; 被动的「人找进度」 → 高效的「进度找人」 把 Code Review 做扎实 代码质量「向左移」&#xff0c;修复成本「往下降」 从无到「优」 自动执行单元测试&#xff0c;覆盖率 0→80% 你喜欢玩游戏吗&#xff1f; 最近…...

【云原生】Docker-Compose全方面学习

目录 1.compose简介 Compose V2 2.compose安装与下载 二进制包 PIP 安装 bash 补全命令 卸载 3.docker compose管理命令 命令对象与格式 命令选项 命令使用说明 1.compose简介 Compose 是用于定义和运行多容器 Docker 应用程序的工具。通过 Compose&#xff0c;您可…...

基于 Redux + TypeScript 实现强类型检查和对 Json 的数据清理

基于 Redux TypeScript 实现强类型检查和对 Json 的数据清理 突然像是打通了任督二脉一样就用了 generics 搞定了之前一直用 any 实现的类型…… 关于 Redux 的部分&#xff0c;这里不多赘述&#xff0c;基本的实现都在这里&#xff1a;Redux Toolkit 调用 API 的四种方式 和…...

HIVE语法优化之Join优化

桶用两表关联字段,MapJoin时需要将小表填入内存,这时候,分桶就起到了作用 一个stage阶段代表一个mr执行,好几个MR,会吧每一个MR的结果都压缩 Mysql 慢查询 如果sql语句执行超过指定时间,定义该sql为慢查询,存储日志, 查问题: SQL日志,模拟慢SQL 然后查询执行计划 分组聚合 就…...

如何申请境内金融信息服务报备

依据《金融信息服务管理规定》等要求&#xff0c;开展境内金融信息服务报备工作事项如下&#xff1a; 一、报备对象及要求 金融信息服务&#xff0c;是指向从事金融分析、金融交易、金融决策或者其他金融活动的用户提供可能影响金融市场的信息和&#xff08;或者&#xff09;…...

VS code:Task

Task 微软官方连接&#xff1a; https://code.visualstudio.com/docs/editor/tasks what is Task 我们知道&#xff0c;vscode可以支持许多编程语言&#xff0c;很多语言是需要进行编译的&#xff0c;打包&#xff0c;测试… 有许多已有的工具支持这些流程&#xff0c;例如A…...

《Java-SE-第三十章》之哲学家就餐问题

前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页&#xff1a;KC老衲爱尼姑的博客主页 博主的github&#xff0c;平常所写代码皆在于此 共勉&#xff1a;talk is cheap, show me the code 作者是爪哇岛的新手&#xff0c;水平很有限&…...

关于接口测试用例设计的一些思考

接口测试发现的典型问题 传入参数处理不当&#xff0c;引起程序错误类型溢出&#xff0c;导致数据读取和写入不一致对象权限校验出错&#xff0c;可获取其他角色信息状态出错&#xff0c;导致逻辑处理出现问题逻辑校验不完善定时任务执行出错 接口测试用例设计 接口测试用例…...

gin和gorm框架安装

理论上只要这两句命令 go get -u gorm.io/gorm go get -u github.com/gin-gonic/gin然而却出现了问题 貌似是代理问题&#xff0c;加上一条命令 go env -w GOPROXYhttps://goproxy.cn,direct 可以成功安装 安装gorm的数据库驱动程序 go get -u gorm.io/driver/mysql...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...