当前位置: 首页 > news >正文

【Groups】50 Matplotlib Visualizations, Python实现,源码可复现

详情请参考博客: Top 50 matplotlib Visualizations
因编译更新问题,本文将稍作更改,以便能够顺利运行。

1 Dendrogram

树状图根据给定的距离度量将相似的点组合在一起,并根据点的相似性将它们组织成树状的链接。

新建文件Dendrogram.py:

# Import Setup
from Setup import pd
from Setup import plt
import scipy.cluster.hierarchy as shc# Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')# Plot
plt.figure(figsize=(16, 10), dpi= 80)  
plt.title("USArrests Dendograms", fontsize=22)  
dend = shc.dendrogram(shc.linkage(df[['Murder', 'Assault', 'UrbanPop', 'Rape']], method='ward'), labels=df.State.values, color_threshold=100)  
plt.xticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

2 Cluster Plot

聚类图可用于划分属于同一聚类的点。下面是一个代表性示例,根据 USArrests 数据集将美国各州分为 5 个组。此聚类图使用“谋杀”和“袭击”列作为 X 轴和 Y 轴。或者,您可以使用第一个到主分量作为 x 轴和 Y 轴。

新建文件Cluster Plot.py:

# Import Setup
from Setup import pd
from Setup import plt
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from scipy.spatial import ConvexHull# Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')# Agglomerative Clustering
cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')  
cluster.fit_predict(df[['Murder', 'Assault', 'UrbanPop', 'Rape']])  # Plot
plt.figure(figsize=(14, 10), dpi= 80)  
plt.scatter(df.iloc[:,0], df.iloc[:,1], c=cluster.labels_, cmap='tab10')  # Encircle
def encircle(x,y, ax=None, **kw):if not ax: ax=plt.gca()p = np.c_[x,y]hull = ConvexHull(p)poly = plt.Polygon(p[hull.vertices,:], **kw)ax.add_patch(poly)# Draw polygon surrounding vertices    
encircle(df.loc[cluster.labels_ == 0, 'Murder'], df.loc[cluster.labels_ == 0, 'Assault'], ec="k", fc="gold", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 1, 'Murder'], df.loc[cluster.labels_ == 1, 'Assault'], ec="k", fc="tab:blue", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 2, 'Murder'], df.loc[cluster.labels_ == 2, 'Assault'], ec="k", fc="tab:red", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 3, 'Murder'], df.loc[cluster.labels_ == 3, 'Assault'], ec="k", fc="tab:green", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 4, 'Murder'], df.loc[cluster.labels_ == 4, 'Assault'], ec="k", fc="tab:orange", alpha=0.2, linewidth=0)# Decorations
plt.xlabel('Murder'); plt.xticks(fontsize=12)
plt.ylabel('Assault'); plt.yticks(fontsize=12)
plt.title('Agglomerative Clustering of USArrests (5 Groups)', fontsize=22)
plt.show()

运行结果为:

在这里插入图片描述

3 Andrews Curve

Andrews 曲线有助于可视化是否存在基于给定分组的数值特征的固有分组。如果特征(数据集中的列)不能帮助区分组 (cyl),则线将无法很好地隔离,如下所示。

新建文件Andrews Curve.py:

# Import Setup
from Setup import pd
from Setup import plt
from pandas.plotting import andrews_curves# Import
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
df.drop(['cars', 'carname'], axis=1, inplace=True)# Plot
plt.figure(figsize=(12,9), dpi= 80)
andrews_curves(df, 'cyl', colormap='Set1')# Lighten borders
plt.gca().spines["top"].set_alpha(0)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(0)
plt.gca().spines["left"].set_alpha(.3)plt.title('Andrews Curves of mtcars', fontsize=22)
plt.xlim(-3,3)
plt.grid(alpha=0.3)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

4 Parallel Coordinates

平行坐标有助于可视化一个特征是否有助于有效地隔离群体。如果隔离已经实现,该特征在预测该群体时可能非常有用。

新建文件Parallel Coordinates.py:

# Import Setup
from Setup import pd
from Setup import plt
from pandas.plotting import parallel_coordinates# Import Data
df_final = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/diamonds_filter.csv")# Plot
plt.figure(figsize=(12,9), dpi= 80)
parallel_coordinates(df_final, 'cut', colormap='Dark2')# Lighten borders
plt.gca().spines["top"].set_alpha(0)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(0)
plt.gca().spines["left"].set_alpha(.3)plt.title('Parallel Coordinated of Diamonds', fontsize=22)
plt.grid(alpha=0.3)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

相关文章:

【Groups】50 Matplotlib Visualizations, Python实现,源码可复现

详情请参考博客: Top 50 matplotlib Visualizations 因编译更新问题,本文将稍作更改,以便能够顺利运行。 1 Dendrogram 树状图根据给定的距离度量将相似的点组合在一起,并根据点的相似性将它们组织成树状的链接。 新建文件Dendrogram.py: …...

windows安装kafka配置SASL-PLAIN安全认证

目录 1.Windows安装zookeeper: 1.1下载zookeeper 1.2 解压之后如图二 1.3创建日志文件 1.4复制 “zoo_sample.cfg” 文件 1.5更改 “zoo.cfg” 配置 1.6新建zk_server_jaas.conf 1.7修改zkEnv.cmd 1.8导入相关jar 1.9以上配置就配好啦,接下来启…...

【Linux】五种IO模型

文章目录 1. IO基本概念2. 五种IO模型2.1 五个钓鱼的例子2.2 五种IO模型2.2.1 阻塞IO2.2.2 非阻塞IO2.2.3 信号驱动IO2.2.4 IO多路转接2.2.5 异步IO 1. IO基本概念 认识IO IO就是输入和输出,在冯诺依曼体系结构中,将数据从输入设备拷贝到内存就叫输入&am…...

SCT82A30DHKR_5.5V-100V Vin同步降压控制器

SCT82A30是一款100V电压模式控制同步降压控制器,具有线路前馈。40ns受控高压侧MOSFET的最小导通时间支持高转换比,实现从48V输入到低压轨的直接降压转换,降低了系统复杂性和解决方案成本。如果需要,在低至6V的输入电压下降期间&am…...

备忘录模式(C++)

定义 在不破坏封装性的前提下,捕获一-个对象的内部状态,并在该对象之外保存这个状态。这样以后就可以将该对象恢复到原先保存的状态。 应用场景 ➢在软件构建过程中,某些对象的状态在转换过程中,可能由于某种需要,要…...

二叉排序树(二叉查找树)

二叉排序树(二叉查找树)的性质: 若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值。若它的右子树不为空,则右子树上所有结点的值均大于它的根将诶点的值。它的左、右子树也分别为二叉排序树。 对二叉…...

Python简单应用VII

题目 编程实现下述各题。 1.使用异常处理结构捕获多种可能的异常,如列表下标索引越界异常(IndexError)、试 图访问一个系统对象没有的属性所发生的异常(AttributeError)、读一个文件但该文件不存在。 2. 新建并打开文件stud1.txt,如果文件已存在就提示“…...

mysql--InnoDB存储引擎--架构和事务

MySQL进阶篇 文章目录 架构1、逻辑结构InnoDB 逻辑存储单元主层级关系图:1、表空间2、段3、区4、页5、行总结: 2、架构2、1 内存架构2、2 磁盘架构 3、事务3、1事务基础(1)事务(2)特性 架构 1、逻辑结构 I…...

0基础学习VR全景平台篇 第79篇:全景相机-泰科易如何直播推流

泰科易科技是中国的一家研发全景相机的高科技公司,前不久,在2020世界VR产业大会上发布了新一代5G VR直播影像采集终端--360starlight。以其出色的夜景成像效果和一“部”到位的直播方案重新定义了VR慢直播相机,对行业具有高度借鉴意义。 本文…...

代码调试4:实现退化模型的训练

代码调试:实现退化模型的训练 作者:安静到无声 个人主页 目录 代码调试:实现退化模型的训练问题1:如何在coco原始编码的基础上修改原始的文件?**方法1**:修改生成的文件**方法2**:直接修改源文件`instances_train2014.json`和`instances_val2014.json`问题2:构建退化后…...

8.7工作总结

一、我们想自定义一个titileBar出现如下这种情况,发现他原来的titileBar还未隐藏。 后来我尝试修改主题使得他没有主题noActionBar发现也不行,后来我参考原先我看过的项目使用了如下代码 this.getActionBar().hide();发现会报这个错误java.lang.NullPoi…...

数据库的约束 详解

一、约束的概述 1.概念:约束是作用于表中字段上的规则,用于限制存储在表中的数据。 2.目的:保证数据库中数据的正确、有效性和完整性。 3.分类: 约束描述关键字非空约束限制该字段的数据不能为nullNOT NULL唯一约束保证该字段的所有数据都是唯一、不…...

Tomcat 编程式启动 JMX 监控

通过这篇文章,我们可以了解到,利用 JMX 技术可以方便获取 Tomcat 监控情况。但是我们采用自研的框架而非大家常见的 SpringBoot,于是就不能方便地通过设置配置开启 Tomcat 的 JMX,——尽管我们也是基于 Tomcat 的 Web 容器&#x…...

Git rebase和merge区别详解

文章目录 变基的基础用法变基过程中的冲突解决冲突后无法push问题更新变基后的代码更有趣的变基用法变基的风险用变基解决变基变基 vs 合并 此文在阅读前需要有一定的git命令基础,若基础尚未掌握,建议先阅读这篇文章Git命令播报详版 在 Git 中整合来自不…...

JDK动态代理的原理解析、代码实现

代理就像是:买家(客户端)——销售(代理对象)——工厂(目标) 买家不用直接去工厂买,而是直接通过销售就可以购买到,假设工厂生产的是杯子,那么工厂只需要提供杯子,而销售在不改变杯子的生产过程的情况下对杯子进行包装设…...

理解和使用Ansible模块,简化自动化任务

Ansible是一款强大的自动化工具,用于管理和配置IT基础设施。在Ansible的世界中,模块(Module)是至关重要的组成部分。本文将深入探讨Ansible模块,了解它们如何简化自动化任务的执行过程。 Ansible模块是Ansible的核心组…...

Docker 快速安装 MinIO

概述 MinIO 是一款基于Go语言的高性能对象存储服务,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等。 拉取docker镜像 docker pull minio/minio创建宿主机数据目录(共享数据卷) 此…...

【源码分析】Nacos如何使用AP协议完成服务端之间的数据同步?

AP节点的同步使用的是异步任务消息队列的方式来实现的。 取出任务之后将会放入到一个List集合中。 然后会发现任务的执行是由条件的。 首先是当前集群的节点数量等于1000,那么此时会直接开始同步,当然这个条件在小项目中不会成立,所以还有…...

黑客删除服务器数据后,间谍软件制造商 LetMeSpy 关闭

总部位于波兰的间谍软件 LetMeSpy 已不再运行,并表示将在 6 月份的一次数据泄露事件中关闭其服务器,其中包括从数千名受害者手机中窃取的大量数据。 LetMeSpy 在其网站上以英语和波兰语发布的通知中确认该间谍软件服务已“永久关闭”,并将于 …...

ebay儿童书包产品CPC认证

儿童书包是一种能够盛放书本或者文具的包。现在的书包五花八门,以普通的布料或者是帆布等制成,有背带,包内一般分栏。一般分三种,背在身后的,挎在肩上的,轮式(可以拖行)的。 一、美国…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...