当前位置: 首页 > news >正文

CCL 2023 电信网络诈骗案件分类评测-第一名方案

1 任务内容

1.1 任务背景

2022年12月1日起,新出台的《反电信网络诈骗犯罪法》正式施行,表明了我国治理当前电信网络诈骗乱象的决心。诈骗案件分类问题是打击电信网路诈骗犯罪过程中的关键一环,根据不同的诈骗方式、手法等将其分类,一方面能够便于统计现状,有助于公安部门掌握当前电信网络诈骗案件的分布特点,进而能够对不同类别的诈骗案件作出针对性的预防、监管、制止、侦查等措施,另一方面也有助于在向群众进行反诈宣传时抓住重点、突出典型等。

1.2 任务简介

文本分类是自然语言处理领域的基础任务,面向电信网络诈骗领域的案件分类对智能化案件分析具有重要意义。本任务目的是对给定案件描述文本进行分类。案件文本包含对案件的整体描述(经过脱敏处理)。具体细节参考第2部分。

2 评测数据

2.1 数据简介

数据采集: 案件文本内容为案情简述,即为受害人的笔录,由公安部门反诈大数据平台导出。

数据清洗: 从反诈大数据平台共计导出 13 个类别的数据,去除了“其他类型诈骗”类别,因此最终采用 12 个类别。

脱敏处理: 去除了案件文本中的姓名、出生日期、地址、涉案网址、各类社交账号以及银行卡号码等个人隐私或敏感信息。

分类依据: 类别体系来源于反诈大数据平台的分类标准,主要依据受害人的法益及犯罪分子的手法进行分类,例如冒充淘宝客服谎称快递丢失的,分为冒充电商物流客服类;冒充公安、检察院、法院人员行骗的,分为冒充公检法及政府机关类;谎称可以帮助消除不良贷款记录的,分为虚假政信类等等。

类别数量: 12 个类别。

2.2 数据样例

数据以json格式存储,每一条数据具有三个属性,分别为案件编号、案情描述、案件类别。样例如下:

{"案件编号": 28043,"案情描述": "事主(女,20岁,汉族,大专文化程度,未婚,现住址:)报称2022年8月27日13时43分许在口被嫌疑人冒充快递客服以申请理赔为由诈骗3634元人民币。对方通过电话()与事主联系,对方自称是中通快递客服称事主的快递物件丢失现需要进行理赔,事主同意后对方便让事主将资金转入对方所谓的“安全账号”内实施诈骗,事主通过网银的方式转账。事主使用的中国农业银行账号,嫌疑人信息:1、成都农村商业银行账号,收款人:;2、中国建设银行账号,收款人:。事主快递信息:中通快递,.现场勘查号:。","案件类别": "冒充电商物流客服类"
},
{"案件编号": 49750,"案情描述": "2022 年 11 月 13 日 14 时 10 分 23 秒我滨河派出所接到 110 报警称在接到自称疾控中心诈骗电话,被骗元,接到报警民警赶到现场,经查,报警人,在辽宁省 17 号楼 162 家中,接到自称沈阳市疾控报警中心电话,对方称报警人去过,报警人否认后对方称把电话转接到哈尔滨市刑侦大队,自称刑侦大队的人说报警人涉及一桩洗钱的案件让报警人配合调查取证,调查取证期间让报警人把钱存到自己的银行卡中,并向报警人发送一个网址链接,在链接上进行操作,操作完后,对方在后台将报警人存在自己银行卡的钱全部转出,共转出五笔,共计元。","案件类别": "冒充公检法及政府机关类"
},
{"案件编号": 78494,"案情描述": "2022 年 1 月 10 日 11 时至 18 时许,受害人在的家中,接到陌生电话:(对方号码:)对方自称是银保监会的工作人员,说受害人京东 APP 里有个金条借款要关闭,否则会影响征信。后对方就让受害人下载了“银视讯”的会议聊天软件,指导受害人如何操作,让受害人通过手机银行(受害人账户:1、交通银行;2、紫金农商银行;3、中国邮政储蓄银行:;4、中国民生银行:;)转账到对方指定账户:嫌疑人账户:1、中国农业银行;2、中国银行;3、中国银行;4、中国建设银行;5、中国银行;共计损失:元。案件编号:","案件类别": "虚假征信类"
}

2.3 数据分布

提供数据共有12个类别,类别具体分布如下表所示。

类别名称样本数量
刷单返利类35459
冒充电商物流客服类13772
虚假网络投资理财类11836
贷款、代办信用卡类11105
虚假征信类8464
虚假购物、服务类7058
冒充公检法及政府机关类4563
冒充领导、熟人类4407
网络游戏产品虚假交易类2155
网络婚恋、交友类(非虚假网络投资理财类)1654
冒充军警购物类1092
网黑案件1197
总计102762

注:在数据集(训练集和测试集)中 “冒充军警购物类” 的标注为 “冒充军警购物类诈骗” 。

训练集及测试集划分如下所示。

数据划分样本数量
训练集82210
测试集A10276
测试集B10276
总计102762

本次评测任务计划仅采用训练集及测试集A以作评测。

2.4 文本长度分布

下图展示了案情描述文本长度的分布情况,因此在预训练阶段,我们选择了预训练了一个1024长度的Nezha模型。
在这里插入图片描述

3 评价标准

评测性能时,本任务主要采用宏平均F1值作为评价标准,即对每一类计算F1值,最后取算术平均值,其计算方式如下:
M a c r o F 1 = 1 n ∑ i = 1 n F 1 i Macro_{F1} = \frac{1}{n} \sum_{i=1}^{n} F1_{i} MacroF1=n1i=1nF1i
其中 F 1 i F1_i F1i 为第i类的 F 1 F1 F1 值,n为类别数,在本任务中n取12。

4 模型架构

本文模型结构如下图所示,基线模型采用BERT(包括其变种)+Linear的文本分类模型架构。并采用预训练、对抗训练和模型融合等三种主要优化策略提升基线模型的性能。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7RgsDA26-1690680329128)(./img/model.jpg)]

4.1 预训练

有效的预训练可以提升模型在下游任务微调的性能。本文提取数据集中的案情描述文本,在预训练阶段添加MLM预训练任务,通过无监督学习使得预训练语言模型获得案件领域的知识,从而使模型具备对案件文本更好的语义理解和特征提取能力。MLM预训练使用了与【1】一致的方式,将输入的案情描述文本随机遮蔽,即为存在15%的概率决定对该token进行修改,其中有80%的概率改为"[MASK]",有10%的概率被替换为一个随机的token,有10%的概率保持不变。MLM预训练任务使用交叉熵损失进行训练,其损失表示为公式:
L m l m = − ∑ i = 0 V − 1 y i m a s k l o g ( p i m a s k ) L_{mlm}=-\sum_{i=0}^{V-1}y_i^{mask}log(p_i^{mask}) Lmlm=i=0V1yimasklog(pimask)
其中,V为模型词表大小, y i m a s k y_i^{mask} yimask是遮蔽字符的标签, p i m a s k p_i^{mask} pimask表示模型预测的概率。

本文在预训练阶段,分别预训练了三种中文模型,分别为nezha、Roberta和Deberta。在使用Nezha-base-wwm预训练语言模型时,输入序列的最大长度为1024,在使用chinese-roberta-wwm-ext-large与Deberta(注:这里使用了两个权重进行实验,320M的进行了预训练,710M的没有进行预训练,相关权重链接:1、Erlangshen-DeBERTa-v2-320M-Chinese:https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese;2、Erlangshen-DeBERTa-v2-710M-Chinese:https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese}预训练语言模型时,输入序列的最大长度为512)。

4.2 对抗训练

为了增强模型对干扰和噪声的抵抗能力,本文实验了PGD【3】、FGM【4】、FreeLB【2】等对抗训练技巧提升模型的鲁棒性,通过实验性能对比,最终主要采用了FreeLB对抗训练。FreeLB的核心思想是通过增加对抗样本的生成空间,引入自由生成的方法来提高模型的鲁棒性。传统的对抗训练方法通常使用固定的扰动方法来生成对抗样本,这可能会限制模型的泛化能力和鲁棒性。相比之下,FreeLB提出了自由生成的概念,它允许生成过程中的扰动更加多样和自由,从而提供更丰富的训练信号。都是在word embedding空间上加入扰动,然后对扰动后的embedding进行look up,得到的词向量再喂给模型。其原理伪代码如表1所示。

在这里插入图片描述

4.3 模型融合

模型融合是一种常用的技术,在文本分类比赛中被广泛应用,旨在提高分类模型的性能和泛化能力。模型融合通过结合多个不同的分类模型的预测结果,从而得到更准确、更稳定的最终预测结果。本文的模型融合的方法是对于每个分类模型的输出概率进行简单的相加,得到最终的融合概率分布,进一步求取最大概率的下标获取对应的类别标签。

5 评测结果

最终相应模型在线上提交评测的结果如下表:

在这里插入图片描述

6 结果分析与讨论

模型对比:本文使用了多个不同的预训练模型进行评测,包括chinese-roberta-wwm-ext-large、nezha-base-wwm和Erlangshen-DeBERTa-v2系列模型。从线上得分来看,预训练后的模型普遍表现比预训练前的模型更好。

数据划分:大部分模型使用了9:1的数据划分比例,即将数据集划分为训练集和验证集。只有两个模型(②和③)使用了全量数据进行训练。使用全量数据进行训练通常会有更好的效果,因为模型可以更充分地学习数据中的模式和规律。

输入长度:所有模型的输入长度都为512或1024。较长的输入长度可以提供更多的上下文信息,有助于模型理解文本的语义和逻辑关系。然而,较长的输入长度也会增加模型的计算负担和训练时间。

模型融合:根据给出的实验结果,可以看出模型组合⑤+⑧+⑨获得了最高的线上得分(0.8660677395)。这是因为这个组合中的模型相互补充,模型的融合能够有效的提升模型的泛化能力。

此外,由于比赛提交次数有限,未提交验证FreeLB对抗训练对于结果的影响,根据本人在其他比赛的经验,该策略能有效提升模型的鲁棒性。

7 结论

本研究针对电信网络诈骗案件的分类问题,通过采用一系列优化策略和技巧,包括BERT的继续预训练、FreeLB的对抗训练和模型融合,取得了显著的成果。实验结果在“CCL23-Eval-任务6-电信网络诈骗案件分类评测”技术评测比赛中最终成绩排名第一,证明了所提出的优化策略在提高电信网络诈骗案件分类性能方面的有效性和优越性。

通过BERT的继续预训练,研究者使模型具备更好的语义理解和特征提取能力,有助于准确地分类和检测电信网络诈骗案件。同时,通过FreeLB的对抗训练,模型的鲁棒性得到增强,使其能够更好地处理噪声和干扰,提高了分类的准确性。此外,采用模型融合的方法将多个模型的预测结果进行融合,进一步提升了分类的效果。

参考文献

【1】Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and Ziqing Yang. 2021. Pre-training with whole word masking for chinese bert. IEEE/ACM Transactions on Audio, Speech, and Language Processing,29:3504–3514.

【2】Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

【3】Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

【4】Takeru Miyato, Andrew M Dai, and Ian Goodfellow. 2016. Adversarial training methods for semivised text classifification. arXiv preprint arXiv:1605.07725.

【5】Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. 2019. Freelb: Enhanced adversarial training for natural language understanding. arXiv preprint arXiv:1909.11764.

【6】https://github.com/GJSeason/CCL2023-FCC

相关文章:

CCL 2023 电信网络诈骗案件分类评测-第一名方案

1 任务内容 1.1 任务背景 2022年12月1日起,新出台的《反电信网络诈骗犯罪法》正式施行,表明了我国治理当前电信网络诈骗乱象的决心。诈骗案件分类问题是打击电信网路诈骗犯罪过程中的关键一环,根据不同的诈骗方式、手法等将其分类&#xff…...

go test

关于go test 报错 command-line-arguments go test 直接调用被测试go文件方法时候报错 command-line-arguments [command-line-arguments.test],这里已经明确指出了命令参数问题 PS E:\code\mqtt> go test .\client_test.go # command-line-arguments [comma…...

401 · 排序矩阵中的从小到大第k个数

链接:LintCode 炼码 - ChatGPT!更高效的学习体验! 题解: 九章算法 - 帮助更多程序员找到好工作,硅谷顶尖IT企业工程师实时在线授课为你传授面试技巧 class Solution { public:/*** param matrix: a matrix of intege…...

进程什么时候会进入阻塞状态

等待I/O操作:当进程需要进行输入/输出操作,但是所需的数据还没有准备好或者输出设备还没有空闲时,进程会进入阻塞状态,等待I/O操作完成。 等待资源:当进程需要访问共享资源,但是该资源已经被其他进程占用时…...

炸裂,靠“吹牛”过京东一面,月薪40K

说在前面 在40岁老架构师尼恩的(50)读者社区中,经常有小伙伴,需要面试美团、京东、阿里、 百度、头条等大厂。 下面是一个5年小伙伴成功拿到通过了京东一面面试,并且最终拿到offer,月薪40K。 现在把面试…...

awk基础知识和案例

文章目录 awk1 awk用法入门1.1 BEGIN和END语句块1.2 awk语法1.2.1 常用命令选项1.2.2 awk变量内置变量自定义变量 1.3 printf命令1.3.1 格式1.3.2 演示 1.4 操作符 2 awk高阶用法2.1 awk控制语句(if-else判断)2.2 awk控制语句(while循环)2.3 awk控制语句(do-while循环)2.4 awk控…...

重型并串式液压机械臂建模与simscape仿真

一、建模 Hydraulic manipulator Figure 1 shows different constituting parts of the manipulator considered, with every part labeled using numbers from 1 to 10. For each part, a CAD model is provided. Each file is named in accordance with the corresponding la…...

zookeeper的部署

一 先下载zookeeper 二 解压包 三 修改配置文件 四 把配好文件传到其他的节点上面 五 在每个节点的dataDir指定的目录下创建一个 myid 的文件 六 配置zook的启动脚本 七 设置开机自启 八 分别启动 九查看当前状态service zookeeper status 十 总结 一 先下载zookeeper …...

css white-space属性

先看不换行的效果,调用.space类 再来看使用 white-space:nowrap的效果 运行结果如下:...

(十四)大数据实战——hadoop集群一键式高可用实现自动故障转移与故障初始化恢复

前言 本节内容延续前面几节内容,综合性的实现hadoop集群的高可用以及hadoop集群故障初始化的恢复,通过一个脚本,实现整个集群的高可用启停与状态观测。主要是zookeeper、hdfs、yarn等服务的高可用集群的一键式启停。 正文 hadoop高可用集群整体规划hadoop高可用集群服务规…...

算法-归并排序

给你一个整数数组 nums,请你将该数组升序排列。 输入:nums [5,2,3,1] 输出:[1,2,3,5] 输入:nums [5,1,1,2,0,0] 输出:[0,0,1,1,2,5] 实现思路直接看我录制的视频吧算法-归并排序_哔哩哔哩_bilibili class Solutio…...

【深度学习】StyleGANv2 2019 论文,Analyzing and Improving the Image Quality of StyleGAN

StyleGAN论文: 《A Style-Based Generator Architecture for Generative Adversarial Networks》 论文:https://arxiv.org/abs/1812.04948 代码: https://github.com/NVlabs/stylegan StyleGANv2论文: 《Analyzing and Improving …...

【AI模型系列】火力全开!百度文心3.5三大维度、20项指标国内问鼎!

目录 写在前面 详细介绍 综合性能评估结果 安全合规方面 写在前面 近日,清华大学新闻与传播学院沈阳团队发布《大语言模型综合性能评估报告》(下文简称“报告”)。 报告显示百度文心一言在三大维度20项指标中综合评分国内第一&#xff0c…...

C++ 多态性——运算符重载

**多态是指同样的消息被不同类型的对象接收时导致不同的行为。**所谓的消息是指对类的成员函数的调用,不同的行为是指不同的实现,也就是调用了不同的函数。 使用同样的“”,就实现了整数之间、浮点数之间、双精度浮点数之间的加法&#xff0…...

Java设计模式---工厂方法(Factory Method)模式

说明 工厂方法(Factory Method)模式是一种工厂模式,也叫多态性工厂(Poloymorphic Factory)模式。 工厂方法模式涉及如下角色: 抽象工厂角色:给出具体工厂角色必须实现的接口。具体工厂角色&a…...

MySQL的关键指标及采集方法

MySQL 是个服务,所以我们可以借用 Google 四个黄金指标的思路来解决问题。 1、延迟 应用程序会向 MySQL 发起 SELECT、UPDATE 等操作,处理这些请求花费了多久,是非常关键的,甚至我们还想知道具体是哪个 SQL 最慢,这样…...

协程怎么解释?Python 中的协程如何实现?Celery 的协程并发引擎如何实现?

文章目录 1. 协程怎么解释?2. 为什么叫协程?3. coroutine 怎么读?4. asyncio 和 gevent 怎么实现协程?4. celery 并发引擎是什么?如何改为协程?5. 一个 celery 服务是否可以同时使用多个不同的引擎? 1. 协…...

Linux:shell脚本:基础使用(2)

test命令 格式1:test 条件表达式 格式2:[ 条件表达式 ] (前后至少应有一个空格) 常用的测试操作符 -d:测试是否为目录(Directory) -e:测试目录或文件是否存在(Exist) -f:测试是否…...

Mir 2.14 正式发布,Ubuntu 使用的 Linux 显示服务器

Canonical 公司最近发布了 Mir 2.14,这是该项目的最新版本。 Mir 2.14 在 Wayland 方面通过 ext-session-lock-v1 协议增加了对屏幕锁定器 (screen lockers) 的支持,并最终支持 Wayland 拖放。此外还整合了渲染平台的实现,放弃了之前在 Raspb…...

合规管理,企业生存之本!这4大方法,助你规避风险

当下,合规管理已成为企业必修的一门学问。无论是上市公司还是民营企业,都面临着日益严苛的监管合规要求。然而,许多企业在在应对频繁更新的合规要求时,仍然手忙脚乱,合规工作参差不齐。 专家分析认为,企业合规困境的主要症结在于,业务运转过程中产生了大量证明文件,但企业对其…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...