当前位置: 首页 > news >正文

LeetCode——1237. 找出给定方程的正整数解

一、题目

在这里插入图片描述
在这里插入图片描述
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/description/

翻译一下题目

意思是,这是一个二维单调递增的函数,函数一共有 9 种,我们可以直接调用 CustomFunction 这个类来使用他定义的函数。测试用例中输入的 function_id 不在我们的考虑范围内,这个 function_id 只是决定了他具体是采用了哪一种函数来进行运算。而我们要做的事情就是,找到所有满足函数等于 target 的数值对。另外建议出题人下次好好学学语文再来出题吧。

二、C++解法

我的思路及代码

枚举

因为他给出了数据的范围,所有我们可以枚举出所有的情况,然后和 target 进行比较,一样则加入答案。

class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> ans;for(int i=1;i<1000;i++){for(int j=1;j<1000;j++){if(z==customfunction.f(i,j)){ans.push_back({i,j});}}}return ans;}
};
  • 时间复杂度:O(mn),其中 m 是 x 的取值数目,n 是 y 的取值数目
  • 空间复杂度:O(1)
枚举改进

在枚举的基础上增加了提前退出循环的条件,由于该函数是单调递增,所以当 f(x,y) = target 时,f(x,y+1) > target 是一定的,所以我们可以减少很多不必要的循环。除此之外我们还可以进行改进,可以继续往下看

class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> ans;for(int i=1;i<1000;i++){for(int j=1;j<1000;j++){if(z==customfunction.f(i,j)){ans.push_back({i,j});}if(z<customfunction.f(i,j))break;}}return ans;}
};
  • 时间复杂度:O(mn),其中 m 是 x 的取值数目,n 是 y 的取值数目
  • 空间复杂度:O(1)

双指针

由于此函数单调递增,所以我们可以采用双指针,一个遍历 x 的从前往后遍历,另外一个遍历 y 的从后往前遍历,当遇到当前的函数值小于 target 时就说明此时在 x 不变的情况下,y 已经小了,所以我们将 x++ 然后还是从上次遍历停止的位置继续开始 y 的遍历。这样可以大幅度减少搜索的次数。

class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> ans;int j=1000;for(int i=1;i<1001;i++){ for(;j>0;j--){if(z==customfunction.f(i,j))ans.push_back({i,j});if(z>customfunction.f(i,j))break;}}return ans;}
};
  • 时间复杂度:O(m+n),其中 m 是 x 的取值数目,n 是 y 的取值数目
  • 空间复杂度:O(1)

官方参考代码

二分查找

题目本质是一个查找的题目,所以可以用二分查找的办法将时间复杂度降低到 nlogn 的级别

class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> res;for (int x = 1; x <= 1000; x++) {int yleft = 1, yright = 1000;while (yleft <= yright) {int ymiddle = (yleft + yright) / 2;if (customfunction.f(x, ymiddle) == z) {res.push_back({x, ymiddle});break;}if (customfunction.f(x, ymiddle) > z) {yright = ymiddle - 1;} else {yleft = ymiddle + 1;}}}return res;}
};
  • 时间复杂度:O(mlog⁡n),其中 m 是 x 的取值数目,n 是 y 的取值数目。
  • 空间复杂度:O(1)

相关文章:

LeetCode——1237. 找出给定方程的正整数解

一、题目 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/description/ 翻译一下题目 意思是&#xff0c;这是一个二维单调递增的函数&#xff0c;函数一共有 9 …...

系统编程中的进程的概念No.3【进程状态】

引言&#xff1a; 北京时间&#xff1a;2023/2/17/8:17&#xff0c;目前听着超能陆战队主题曲《Immortals》&#xff0c;感觉又要螺旋式升天&#xff0c;并且为我今天上午没课感到happy&#xff0c;所以继我们很久以前的关于进程的博客&#xff0c;今天我们就再来学习一下有关…...

推荐 3 款 Golang 语义化版本库

文章目录1.什么是语义化版本 2.0.02.Golang 语义化版本库比较3.小结参考文献1.什么是语义化版本 2.0.0 语义化版本 2.0.0&#xff08;Semantic Versioning 2.0.0&#xff09;是一种用于标识软件版本的约定和规范。它包含三个数字组成的版本号&#xff0c;格式为“MAJOR.MINOR.…...

Windows平台使用gdb连接qemu虚拟机上的系统

先安装MinGW&#xff1b; 除了gcc、g&#xff0c;把gdb也选上&#xff1b;可能选第一个就可以了&#xff0c;不清楚把后面几个也选上&#xff1b; 安装完成看一下gcc, g&#xff0c;gdb&#xff0c;编译工具和调试器都有了&#xff1b; 把bin目录加到环境变量&#xff1b; 看一…...

【博客624】MAC地址表、ARP表、路由表(RIB表)、转发表(FIB表)

MAC地址表、ARP表、路由表(RIB表/FIB表) MAC地址表 MAC地址表是交换机等网络设备记录MAC地址和端口的映射关系&#xff0c;代表了交换机从哪个端口学习到了某个MAC地址&#xff0c;交换机把这个信息记录下来&#xff0c;后续交换机需要转发数据的时候就可以根据报文的目的MAC地…...

【蓝桥日记⑤】2014第五届省赛(软件类)JavaA组❆答案解析

【蓝桥日记⑤】2014第五届省赛&#xff08;软件类&#xff09;JavaA组☃答案解析 文章目录【蓝桥日记⑤】2014第五届省赛&#xff08;软件类&#xff09;JavaA组☃答案解析1、猜年龄2、李白打酒3、神奇算式4、写日志5、锦标赛6、六角填数7、绳圈8、兰顿蚂蚁9、斐波那契10、波动…...

Leetcode.1139 最大的以 1 为边界的正方形

题目链接 Leetcode.1139 最大的以 1 为边界的正方形 Rating &#xff1a; 1744 题目描述 给你一个由若干 0 和 1 组成的二维网格 grid&#xff0c;请你找出边界全部由 1 组成的最大 正方形 子网格&#xff0c;并返回该子网格中的元素数量。 如果不存在&#xff0c;则返回 0。…...

Bing+ChatGPT 对传统搜索引擎的降维打击

早些时候申请了新版 Bing 的内测资格&#xff0c;终于收到了通过的邮件。 一天的体验之后&#xff0c;我的感受是&#xff1a;当新版 Bing 具备了 ChatGPT 的聊天能力之后&#xff0c;它的能力不论是对传统搜索引擎&#xff0c;还是 ChatGPT 自身&#xff0c;都将是降维打击。 …...

【JS】数组常用方法总结-功能、参数、返回值

数组常用方法总结-功能、参数、返回值 用简单的js示例 运行在线工具&#xff1a;链接: 菜鸟工具 菜鸟工具示意图&#xff1a; ![在这里插入图片描述](https://img-blog.csdnimg.cn/de8589eb1acf42abb0347d8a3a3bbdfa.png 1.会改变原有数组方法 &#xff08;1&#xff09;pu…...

pytest 单元测试前后置处理

文章目录方法1 setup/teardown方法2 fixture 夹具方法3 conftest.py测试用例执行前后的一些处理动作&#xff0c;也叫夹具。以下介绍使用前后置操作的几种方法。方法1 setup/teardown setup&#xff0c;每个测试用例执行前要进行的处理。 teardown&#xff0c;每个测试用例执行…...

汽车安全硬件扩展 AUTOSAR SHE SecureHardwareExtensions

SHE&#xff08;Secure Hardware Extension&#xff09;在车联网中&#xff0c;被应用在车端ECU中负责安全存储与安全计算。是由HIS&#xff08;由Audi、BMW、Porsche、Volkswagen组成&#xff09;制定的标准&#xff0c;中文意思“安全硬件扩展”&#xff0c;是对任何给定微控…...

2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码

目录 前言 一、题目理解 背景 解析 字段含义&#xff1a; 建模要求 二、建模思路 灰色预测&#xff1a; ​编辑 二次指数平滑法&#xff1a; person相关性 只希望各位以后遇到建模比赛可以艾特认识一下我&#xff0c;我可以提供免费的思路和部分源码&#xff0c;以后…...

5、HAL库驱动W25Qxx

一、 SPI通信驱动W25Qxx 1、使用驱动文件快速配置工程代码驱动W25Qxx &#xff08;此驱动文件只适合W25Qxx 16M及以下型号&#xff0c;因为访问地址位数不同&#xff09; 注&#xff1a;本次使用SPI的方式进行访问W25Qxx Flash进行数据读写&#xff0c;关于W25Qxx芯片不会做…...

git rebase 洐合(变基)

洐合 把一个分支整合到另一个分支的办法有两种&#xff1a;merge&#xff08;合并&#xff09; 和 rebase&#xff08;衍合&#xff09; 为什么使用&#xff1f; 使提交记录更简洁 三种情况 第一种&#xff1a; 合并多条commit记录 git rebase -i HEAD~合并数量 HEAD~3&a…...

Kubernetes 1.18学习笔记

文章目录一、Kubernetes 概述和架构1、kubernetes 基本介绍2、Kubernetes 功能3、Kubernetes 架构组件4、Kubernetes 核心概念5、Kubernetes 工作原理二、Kubernetes 集群搭建1、系统环境准备1.1 安装要求1.2 系统初始化2、客户端工具kubeadm搭建2.1 安装步骤2.2 安装组件2.3 集…...

AJAX技术

AJAX技术 浏览器是多进程的&#xff0c;简单的说就是&#xff0c;浏览器每打开一个标签页&#xff0c;就相当于创建了一个独立的浏览器进程。但是js是基于单线程的&#xff0c;而这个线程就是浏览器的js引擎&#xff0c;浏览器无论在什么时候都只且只有一个线程在运行JavaScri…...

华为OD机试 - 最大排列(JS)

最大排列 题目 给定一组整数&#xff0c;重排序后输出一个最大的整数 输入 数字组合 输出 最大的整数 示例一 输入 10 9输出 910解题思路 我们可以读入一个字符串&#xff0c;将字符串中的单词按照每个单词的字典序长度&#xff0c;字典序从大到小的顺序排序&#x…...

Prometheus Docker安装及监控自身

前提环境&#xff1a; Docker环境 涉及参考文档&#xff1a; 安装Prometheus开始 Prometheusnode_exporter Agent组件 一、部署Prometheus 1、启动容器将文件拷贝出来 docker run -d prom/prometheus2、容器将文件拷贝出来 docker cp 容器ID:/usr/share/prometheus/conso…...

点云处理PCL常用函数与工具

点云处理PCL常用函数与工具 文章目录点云处理PCL常用函数与工具前言一、点云读取与保存数据读取数据保存自定义的点云保存格式二、点云显示点云显示-根据颜色点云显示-根据指定轴数值点云显示-根据指定信息显示多组点云显示三、点云滤波直通滤波统计滤波均匀下采样滤波VoxelGri…...

FyListen 在 MVP 架构中的内存优化表现

FyListen 在 MVP 中的内存优化表现 本文只是分享个人开源框架的内存优化测试&#xff0c;你可以直接跳到最后&#xff0c;参考内存泄漏的分析过程&#xff01; 项目地址&#xff1a; https://github.com/StudyNoteOfTu/fylisten2-alpha1 由于使用到 AOP&#xff0c;所以直接…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...