当前位置: 首页 > news >正文

机器学习笔记之优化算法(九)收敛速度的简单认识

机器学习笔记之优化算法——收敛速度的简单认识

引言

本节对收敛速度简单介绍。

收敛速度的判别标准

我们之前几节介绍了线搜索方法 ( Line Search Method ) (\text{Line Search Method}) (Line Search Method),并从方向角度、步长角度描述了先搜索方法的迭代优化过程。关于针对目标函数 f ( X ) f(\mathcal X) f(X)优化的终极目标: min ⁡ X ∈ R n f ( X ) \mathop{\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) XRnminf(X),我们希望通过一系列数值解 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0,使其对应的目标函数结果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0收敛到最优值 f ∗ f^* f
也可以等价写作: { x k } k = 0 ∞ ⇒ x ∗ ; f ( x ∗ ) = f ∗ \{x_k\}_{k=0}^{\infty} \Rightarrow x^*;f(x^*) = f^* {xk}k=0x;f(x)=f。其中 x ∗ x^* x则表示迭代产生的最优数值解: x ∗ = arg ⁡ min ⁡ X ∈ R n f ( X ) x^* = \mathop{\arg\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) x=XRnargminf(X)
{ f ( x k ) } k = 0 ∞ ⇒ f ∗ \{f(x_k)\}_{k=0}^{\infty} \Rightarrow f^* {f(xk)}k=0f

本节将介绍两种关于收敛速度的判别标准 Q \mathcal Q Q-收敛速度 R \mathcal R R-收敛速度

Q \mathcal Q Q-收敛速度

其中 Q \mathcal Q Q-收敛速度中的 Q \mathcal Q Q是指: Quotient \text{Quotient} Quotient,也就是除法中的。该方式主要围绕迭代过程中数值解 x k , x k + 1 x_k,x_{k+1} xk,xk+1最优解 x ∗ x^* x之间差异性的商值对收敛速度进行描述:

  • 由于 x k , x k + 1 , x ∗ x_k,x_{k+1},x^* xk,xk+1,x可能是 ∈ R n \in \mathbb R^n Rn的向量,因此关于差异性的描述使用范数进行表示。
  • 而这个范数也可以理解为:数值解最优解之间的距离,是一个正值。
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} klim∣∣xkx∣∣∣∣xk+1x∣∣

在判断是否为 Q \mathcal Q Q-收敛时,我们事先假定

  • k k k充分大——这意味着 x k , x k + 1 x_k,x_{k+1} xk,xk+1都经过充分迭代产生的数值解,因而它们均无限趋近于 x ∗ x^* x。也就是说:无论 ∣ ∣ x k + 1 − x ∗ ∣ ∣ ||x_{k+1} - x^*|| ∣∣xk+1x∣∣还是 ∣ ∣ x k − x ∗ ∣ ∣ ||x_{k} - x^*|| ∣∣xkx∣∣,它们都可视作无穷小量
    { lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ = 0 lim ⁡ k ⇒ ∞ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \begin{cases} \mathop{\lim}\limits_{k \Rightarrow \infty} ||x_{k+1} - x^*|| = 0 \\ \mathop{\lim}\limits_{k \Rightarrow \infty} ||x_{k} - x^*|| = 0 \\ \end{cases} klim∣∣xk+1x∣∣=0klim∣∣xkx∣∣=0
  • x k x_k xk f ( x k ) f(x_k) f(xk)同理——这个意思并不是 x k x_k xk f ( x k ) f(x_k) f(xk)可以进行相互替换,而是说在 Q \mathcal Q Q-收敛中, f ( x k ) f(x_k) f(xk)与· x k x_k xk一样存在相同形式的定义
    这两个定义在 Q \mathcal Q Q-收敛中没有区别,针对具体情况都可以进行使用。
    lim ⁡ k ⇒ ∞ ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{|| f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} klim∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣

我们根据收敛速度的强度由低到高介绍 4 4 4 Q \mathcal Q Q-收敛:

  • Q \mathcal Q Q-次线性收敛 ( Q-SubLinear Convergence ) (\text{Q-SubLinear Convergence}) (Q-SubLinear Convergence),其定义用数学符号表示为:
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 klim∣∣xkx∣∣∣∣xk+1x∣∣=1

  • Q \mathcal Q Q-线性收敛 ( Q-Linear Convergence ) (\text{Q-Linear Convergence}) (Q-Linear Convergence)。对应数学符号表示为:
    ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ ≤ a ∈ ( 0 , 1 ) \frac{||x_{k+1} - x^*||}{||x_k - x^*||} \leq a \in (0,1) ∣∣xkx∣∣∣∣xk+1x∣∣a(0,1)
    我们发现,与 Q \mathcal Q Q-次线性收敛不同的是,它并没有加极限符号。并且:差异性的比值被 ( 0 , 1 ) (0,1) (0,1)范围内的常数 a a a限制着。例如:目标函数值集合 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0服从函数 G ( k ) = 2 − k \mathcal G(k) = 2^{-k} G(k)=2k。其定义域内对应的函数图像表示如下:
    Q-线性收敛示例
    可以发现:随着 k ⇒ ∞ k \Rightarrow \infty k,可以得到最优解 f ∗ = 0 f^* = 0 f=0,而对应的 ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ \begin{aligned}\frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||}\end{aligned} ∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣在图像中可表示为相邻红色直线之间的比值。这个比值的计算结果为:
    ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ = 2 − ( k + 1 ) − 0 2 − k − 0 = 1 2 \frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \frac{2^{-(k+1)} - 0}{2^{-k} - 0} = \frac{1}{2} ∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣=2k02(k+1)0=21
    因此,由 G ( k ) \mathcal G(k) G(k)表示的 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0 a = 1 2 \begin{aligned}a = \frac{1}{2}\end{aligned} a=21 Q \mathcal Q Q-线性收敛
    此处所谓线性是指:将 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0视作为误差序列。也就是说:随着迭代次数 k k k的增加,误差信息 G ( k ) \mathcal G(k) G(k)越来越小,最终减少到 0 0 0。对误差取对数操作后,其结果 log ⁡ G ( k ) \log \mathcal G(k) logG(k) k k k之间呈线性关系
    这里关于 log ⁡ \log log取底数为 2 2 2
    log ⁡ G ( k ) = log ⁡ 2 2 − k = − k \log \mathcal G(k) = \log_2 2^{-k} =-k logG(k)=log22k=k
    a a a取到极限 1 1 1时, Q \mathcal Q Q-线性收敛会退化至 Q \mathcal Q Q-次线性收敛;相反,当 a a a取到极限 0 0 0时, Q \mathcal Q Q-线性收敛会进化至 Q \mathcal Q Q-超线性收敛。反过来说:

    • 为什么被称作 Q \mathcal Q Q-次线性收敛是因为:相比 Q \mathcal Q Q-线性收敛中相邻迭代产生的差异性比值能够明显地用 a ∈ ( 0 , 1 ) a \in (0,1) a(0,1)描述出来;而 Q \mathcal Q Q-次线性收敛中相邻迭代产生的差异性几乎完全相同,它们之间的差距可以忽略不计。从而才有:
      很明显,相比 Q \mathcal Q Q-次线性收敛, Q \mathcal Q Q-线性收敛的差异性更明显,收敛的速度更快。
      lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 klim∣∣xkx∣∣∣∣xk+1x∣∣=1
      例如: G ( k ) = 1 k \begin{aligned}\mathcal G(k) = \frac{1}{k}\end{aligned} G(k)=k1就是一个明显的 Q \mathcal Q Q-次线性收敛。其对应函数图像表示如下:
      很明显,相比上述的 G ( k ) = 2 − k \mathcal G(k)=2^{-k} G(k)=2k,随着迭代次数 k k k的增加,相邻红色线比值的变化并不非常明显。
      Q次线性收敛示例
      其次通过计算比值也能观察到类似的效果:
      很明显,当充分迭代之后,此时 k k k已经充分大,而 k k + 1 \begin{aligned}\frac{k}{k+1}\end{aligned} k+1k这样的收敛效果完全可以忽略不计。
      lim ⁡ k ⇒ ∞ ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ = lim ⁡ k ⇒ ∞ 1 k + 1 − 0 1 k − 0 = lim ⁡ k ⇒ ∞ k k + 1 = 1 \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{\frac{1}{k+1} - 0}{\frac{1}{k} - 0} = \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{k}{k+1} = 1 klim∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣=klimk10k+110=klimk+1k=1
  • Q \mathcal Q Q-次线性收敛相反, Q \mathcal Q Q-超线性收敛 ( Q-Superlinear Convergence ) (\text{Q-Superlinear Convergence}) (Q-Superlinear Convergence)的定义用数学符号表示为:
    这意味着相邻迭代次数之间差异性极大,使得 x k + 1 x_{k+1} xk+1对应的差异性结果与 x k x_k xk的差异性结果相比小到可以忽略不计,这里不再过多赘述。
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 0 klim∣∣xkx∣∣∣∣xk+1x∣∣=0

  • Q \mathcal Q Q-二次收敛 ( Q-Quadratic Convergence ) (\text{Q-Quadratic Convergence}) (Q-Quadratic Convergence)的定义用数学符号表示为:

    • 同理,如 Q \mathcal Q Q-三次收敛 ( Cubic Convergence ) (\text{Cubic Convergence}) (Cubic Convergence)等等,仅与分母中的指数项相关。
    • 相比于线性收敛中 a ∈ ( 0 , 1 ) a \in (0, 1) a(0,1),我们在 Q \mathcal Q Q-二次收敛中不会更多计较 a a a的范围,因为无穷小量的级别就可以说明其收敛速度。
      ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ 2 ≤ a ∈ ( 0 , + ∞ ) \frac{||x_{k+1} - x^*||}{||x_k - x^*||^2} \leq a \in (0,+\infty) ∣∣xkx2∣∣xk+1x∣∣a(0,+)

    Q \mathcal Q Q-线性收敛的定义类似,也同样没有极限符号。由于 ∣ ∣ x k − x ∗ ∣ ∣ ||x_k - x^*|| ∣∣xkx∣∣自身就是一个无穷小量,那么它的平方结果可理解为一个更高级别的无穷小量,反过来说明:如果 x k + 1 x_{k+1} xk+1差异性所描述的无穷小量与 x k x_k xk差异性的平方所描述的无穷小量是一个级别的话,那么它的收敛速度已经超越了线性范畴

    例如: G ( k ) = 2 − 2 k \mathcal G(k) = 2^{-2^{k}} G(k)=22k就是明显的 Q \mathcal Q Q-二次收敛。其对应的函数图像表示如下:
    很明显,相比上面的收敛,它的收敛速度更快了,这里不再过多赘述。
    Q二次收敛示例
    对应比值的计算结果是:
    G ( k + 1 ) − 0 [ G ( k ) ] 2 = 2 − 2 k + 1 [ 2 − 2 k ] 2 = 1 ∈ ( 0 , + ∞ ) \begin{aligned}\frac{\mathcal G(k+1) -0}{[\mathcal G(k)]^2} = \frac{2^{-2^{k+1}}}{[2^{-2^k}]^2} = 1 \in (0, +\infty)\end{aligned} [G(k)]2G(k+1)0=[22k]222k+1=1(0,+)

R \mathcal R R-收敛速度

其中 R \mathcal R R-收敛速度中的 R \mathcal R R是指: Root \text{Root} Root。关于假设条件与 Q \mathcal Q Q-收敛速度相同,这里不再赘述:

  • k k k充分大;
  • x k x_k xk f ( x k ) f(x_k) f(xk)共用相同概念

关于 R \mathcal R R-收敛速度定义的数学符号表示如下:
∣ ∣ x k − x ∗ ∣ ∣ ≤ t k ||x_k - x^*|| \leq t_k ∣∣xkx∣∣tk
其中 ∣ ∣ x k − x ∗ ∣ ∣ ||x_k - x^*|| ∣∣xkx∣∣依然是数值解与最优解之间的差异性信息(距离范数);该结果被另外一个序列 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0限制住

  • 如果 t k t_k tk Q \mathcal Q Q-次线性/线性/超线性/二次收敛
  • 并且 lim ⁡ k ⇒ ∞ t k = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} t_k = 0 klimtk=0
    这说明 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0是一个 误差序列而不是数值解序列。上面的函数例子中,我们使用这些函数描述的是数值解序列 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0或者 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0,但这里示例函数 G ( k ) \mathcal G(k) G(k)最终都会收敛到 0 0 0,因而也可以将其视作误差序列

则称 x k x_k xk R \mathcal R R-次线性/线性/超线性/二次收敛
可以看出: Q \mathcal Q Q R \mathcal R R的区别在于:

  • 关于差异性的描述: Q ⇒ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ p ( p = 1 , 2 , 3 , ⋯ ) \begin{aligned}\mathcal Q \Rightarrow \frac{||x_{k+1} - x^*||}{||x_k - x^*||^p}(p=1,2,3,\cdots)\end{aligned} Q∣∣xkxp∣∣xk+1x∣∣(p=1,2,3,) R ⇒ ∣ ∣ x k − x ∗ ∣ ∣ \mathcal R \Rightarrow ||x_k - x^*|| R∣∣xkx∣∣
  • 相比于 Q \mathcal Q Q中使用具体值(0、1)或者范围 ( 0 , 1 ) ; ( 0 , + ∞ ) (0,1);(0,+\infty) (0,1);(0,+) R \mathcal R R则使用误差序列 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0,并且每一个迭代步骤 k = 0 , 1 , 2 , ⋯ k=0,1,2,\cdots k=0,1,2,均被对应 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0中的 t 0 , t 1 , t 2 , ⋯ t_0,t_1,t_2,\cdots t0,t1,t2,限制住。

之所以会定义 R \mathcal R R-收敛速度,原因在于:一些情况下, Q \mathcal Q Q-收敛速度不容易求解,如果找到一组合适的 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0,可以根据 t k t_k tk的收敛速度,从而对 x k x_k xk的收敛速度进行表达。例如:
∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ G ( k ) = 1 k ||f(x_k) - f^*|| \leq \mathcal G(k) = \frac{1}{k} ∣∣f(xk)f∣∣G(k)=k1
我们已经知道:满足 G ( k ) \mathcal G(k) G(k)误差序列 Q \mathcal Q Q-次线性收敛,因而可以判断 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0 R − \mathcal R- R次线性收敛

关于算法复杂度与收敛速度

在真实情况下,我们不能任由算法无限迭代下去,即 k k k不能无限大。因而我们会设置一些判断条件。例如:
这里 ϵ \epsilon ϵ表示描述限制条件的超参数。达到该条件,即可停止算法。
∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ ϵ ||f(x_k) - f^*|| \leq \epsilon ∣∣f(xk)f∣∣ϵ

  • 如果依然以 Q \mathcal Q Q-次线性收敛 1 k \begin{aligned}\frac{1}{k}\end{aligned} k1为例,需要满足:
    ∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ G ( k ) = 1 k ≤ ϵ ⇒ k ≥ 1 ϵ ||f(x_k) - f^*|| \leq \mathcal G(k) =\frac{1}{k} \leq \epsilon \Rightarrow k \geq \frac{1}{\epsilon} ∣∣f(xk)f∣∣G(k)=k1ϵkϵ1
    可以看出: ϵ \epsilon ϵ越小时,迭代的次数 k k k越大
  • 如果以 Q \mathcal Q Q-线性收敛 2 − k 2^{-k} 2k为例,需要满足:
    2 − k ≤ ϵ ⇒ k ≥ log ⁡ 2 1 ϵ 2^{-k} \leq \epsilon \Rightarrow k \geq \log_2 \frac{1}{\epsilon} 2kϵklog2ϵ1

可以观察到: ϵ \epsilon ϵ很小的情况下,关于 1 ϵ \begin{aligned}\frac{1}{\epsilon}\end{aligned} ϵ1其量级远高于 log ⁡ 2 1 ϵ \begin{aligned}\log_2 \frac{1}{\epsilon}\end{aligned} log2ϵ1
随着 1 ϵ \begin{aligned}\frac{1}{\epsilon}\end{aligned} ϵ1的增加, Q \mathcal Q Q-次线性收敛(蓝色直线) Q \mathcal Q Q-线性收敛(橙色曲线)对应的函数结果相比,其对应函数值的增速明显更高,而更高意味着更多的迭代步骤

算法复杂度与收敛速度示例
因此,一般情况下,使用更高强度的收敛速度,那么他的迭代步骤就会减小,从而降低算法复杂度。

相关参考:
【优化算法】收敛速度简介
优化里的Q-linear Convergence和R-linear convergence是什么意思?

相关文章:

机器学习笔记之优化算法(九)收敛速度的简单认识

机器学习笔记之优化算法——收敛速度的简单认识 引言收敛速度的判别标准 Q \mathcal Q Q-收敛速度 R \mathcal R R-收敛速度关于算法复杂度与收敛速度 引言 本节对收敛速度简单介绍。 收敛速度的判别标准 我们之前几节介绍了线搜索方法 ( Line Search Method ) (\text{Line …...

FPGA学习——Altera IP核调用之PLL篇

文章目录 一、IP核1.1 IP核简介1.2 FPGA中IP核的分类1.3 IP核的缺陷 二、PLL简介2.1 什么是PLL2.2 PLL结构图2.3 C4开发板上PLL的位置 三、IP核调用步骤四、编写测试代码五、总结 一、IP核 1.1 IP核简介 IP核(知识产权核),是在集成电路的可…...

经纬度坐标工具

LngLatUtil :用于计算里程数 import cn.hutool.core.util.ArrayUtil; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONObject; import lombok.Getter; import lombok.Setter;import java.io.FileInputStream; import java.io.Serializable; import java.t…...

如何使用伪元素::before和::after?

伪元素(::before和::after)是CSS中非常有用的特性,它们允许你在元素的内容之前或之后插入额外的内容,并且不需要在HTML结构中添加额外的标记。这样可以方便地在页面上添加装饰性元素、图标、或者样式效果。以下是使用伪元素的基本方法: 1、创…...

Visual Studio Code中对打开的脚本格式统一

什么是Language Server Protocol (LSP)? Language Server Protocol(语言服务器协议,简称LSP)是微软在2016年提出的一套统一的通讯协议方案。LSP定义了一套编辑器或者IDE与语言服务器(Language Server)之间使用的协议&…...

补充JDK源码-IDEA集成工具

在阅读JDK8源码的时候发现,只有一小部分常用包是存在源码及其注释的,而很多内部包是没有源码,class文件在阅读的时候对阅读者十分不友好。在网上搜集了很多资料都没有解决问题。 解决问题办法:参考文档。本文主要是根据这篇文章记…...

Git Submodule 更新子库失败 fatal: Unable to fetch in submodule path

编辑本地目录 .git/config 文件 在 [submodule “Assets/CommonModule”] 项下 加入 fetch refs/heads/:refs/remotes/origin/...

Springboot切面打印日志

切面打印完整日志,以下代码用于扫描RestController 注解修饰的接口,并打印相关日志 import org.aspectj.lang.JoinPoint; import org.aspectj.lang.annotation.AfterReturning; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Before; impor…...

ubuntu上回环设备/dev/loop0占用100%清理

查看磁盘占用情况时: df -h/dev/loopn这些设备在Linux下被称为回环设备。 终端输入: sudo apt autoremove --purge snapd再次查看:...

List list=new ArrayList()抛出的ArrayIndexOutOfBoundsException异常

1.应用场景,今天生产日志监控到一下ArrayList 进行add 异常,具体日志如下: eptionHandler.handler(178): TXXYBUSSINESS|执行异常 java.util.concurrent.CompletionException: java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bo…...

桶排序算法

桶排序算法 算法思想概述:桶排序的主要步骤如下: 算法goland实现:图解演示: 算法思想概述: 桶排序(Bucket Sort)是一种非比较性的排序算法,它将待排序的元素分到有限数量的桶&#…...

P8604 [蓝桥杯 2013 国 C] 危险系数

题目背景 抗日战争时期,冀中平原的地道战曾发挥重要作用。 题目描述 地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。 我们来定义一个危险系数 DF(x,y)&…...

Excel·VBA表格横向、纵向相互转换

如图:对图中区域 A1:M6 横向表格,转换成区域 A1:C20 纵向表格,即 B:M 列转换成每2列一组按行写入,并删除空行。同理,反向操作就是纵向表格转换成横向表格 目录 横向转纵向实现方法1转换结果 实现方法2转换结果 纵向转横…...

Leetcode-每日一题【剑指 Offer 06. 从尾到头打印链表】

题目 输入一个链表的头节点&#xff0c;从尾到头反过来返回每个节点的值&#xff08;用数组返回&#xff09;。 示例 1&#xff1a; 输入&#xff1a;head [1,3,2]输出&#xff1a;[2,3,1] 限制&#xff1a; 0 < 链表长度 < 10000 解题思路 1.题目要求我们从尾到头反过…...

LeetCode--HOT100题(22)

目录 题目描述&#xff1a;160. 相交链表&#xff08;简单&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;160. 相交链表&#xff08;简单&#xff09; 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表…...

产品体系架构202308版

1.前言 当我们不断向前奔跑时&#xff0c;需要回头压实走过的路。不断扩张的同时把相应的内容沉淀下来&#xff0c;为后续的发展铺垫基石。 不知从何时起&#xff0c;产品的架构就面向了微服务/中台化/前后端分离/低代码化/分布式/智能化/运行可观测化的综合体&#xff0c;让…...

Linux systemctl 简单介绍与使用

在Linux下&#xff0c;systemctl是一个管理系统服务的命令。它提供了对systemd服务的控制和管理。 在系统中使用systemctl命令&#xff0c;您可以执行以下操作&#xff1a; 启动服务&#xff1a;systemctl start servicename停止服务&#xff1a;systemctl stop servicename重…...

恺英网络宣布:与华为鸿蒙系统展开合作,将开发多款手游

8月5日消息&#xff0c;恺英网络宣布旗下子公司盛和网络参加了华为开发者大会&#xff08;HDC.Together&#xff09;游戏服务论坛&#xff0c;并在华为鸿蒙生态游戏先锋合作启动仪式上进行了亮相。恺英网络表示&#xff0c;将逐步在HarmonyOS上开发多款游戏&#xff0c;利用Har…...

Vue CORS

使用Vue框架报错&#xff0c;客户端浏览器有CORS错误&#xff0c;怎么解决&#xff1f; 参考API Proxying During Development&#xff0c;可以新增或修改config/index.js下的proxyTable属性。 留意到 proxyTable的key值为/api&#xff0c;代表所有服务端域名都改成以/api开头…...

Godot 4 源码分析 - 文件读入编码处理

今天需要读入xml文件进行处理&#xff0c;结果读入一个带中文的文件时&#xff0c;出错了。当然程序还能运行&#xff0c;但编译器一直报错&#xff0c;而且XML解析也不正确 单步调试发现读入的内容出现乱码&#xff0c;具体逻辑&#xff1a; String FileAccess::get_as_text…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...

【汇编逆向系列】六、函数调用包含多个参数之多个整型-参数压栈顺序,rcx,rdx,r8,r9寄存器

从本章节开始&#xff0c;进入到函数有多个参数的情况&#xff0c;前面几个章节中介绍了整型和浮点型使用了不同的寄存器在进行函数传参&#xff0c;ECX是整型的第一个参数的寄存器&#xff0c;那么多个参数的情况下函数如何传参&#xff0c;下面展开介绍参数为整型时候的几种情…...

Python爬虫(四):PyQuery 框架

PyQuery 框架详解与对比 BeautifulSoup 第一部分&#xff1a;PyQuery 框架介绍 1. PyQuery 是什么&#xff1f; PyQuery 是一个 Python 的 HTML/XML 解析库&#xff0c;它采用了 jQuery 的语法风格&#xff0c;让开发者能够用类似前端 jQuery 的方式处理文档解析。它的核心特…...