当前位置: 首页 > news >正文

数据库索引的使用

1、MySQL的基本架构

  • 架构图

在这里插入图片描述
左边的client可以看成是客户端,客户端有很多,像我们经常你使用的CMD黑窗口,像我们经常用于学习的WorkBench,像企业经常使用的Navicat工具,它们都是一个客户端。右边的这一大堆都可以看成是Server(MySQL的服务端),我们将Server在细分为sql层和存储引擎层。

当查询出数据以后,会返回给执行器。执行器一方面将结果写到查询缓存里面,当你下次再次查询的时候,就可以直接从查询缓存中获取到数据了。另一方面,直接将结果响应回客户端。

  • 查询数据库的引擎

① show engines;

在这里插入图片描述

show variables like “%storage_engine%”;
在这里插入图片描述

  • 指定数据库对象的存储引擎
create table tb(id int(4) auto_increment,name varchar(5),dept varchar(5),primary key(id)
) engine=myISAM auto_increment=1 default charset=utf8;

2、SQL优化

优化SQL,最重要的就是优化SQL索引。

索引相当于字典的目录。利用字典目录查找汉字的过程,就相当于利用SQL索引查找某条记录的过程。有了索引,就可以很方便快捷的定位某条记录
索引就是帮助MySQL高效获取数据的一种【数据结构】。索引是一种树结构,MySQL中一般用的是【B+树】。

树形结构的特点是:子元素比父元素小的,放在左侧;子元素比父元素大的,放在右侧。
这个图示只是为了帮我们简单理解索引的,真实的关于【B+树】的说明,我们会在下面进行说明。
在这里插入图片描述
索引是怎么查找数据的呢?两个字【指向】,上图中我们给age列指定了一个索引,即类似于右侧的这种树形结构。mysql表中的每一行记录都有一个硬件地址,例如索引中的age=50,指向的就是源表中该行的标识符(“硬件地址”)。

也就是说,树形索引建立了与源表中每行记录硬件地址的映射关系,当你指定了某个索引,这种映射关系也就建成了,这就是为什么我们可以通过索引快速定位源表中记录的原因。

以【select * from student where age=33】查询语句为例。当我们不加索引的时候,会从上到下扫描源表,当扫描到第5行的时候,找到了我们想要找到了元素,一共是查询了5次。

当添加了索引以后,就直接在树形结构中进行查找,33比50小,就从左侧查询到了23,33大于23,就又查询到了右侧,这下找到了33,整个索引结束,一共进行了3次查找。是不是很方便,假如我们此时需要查找age=62,你再想想“添加索引”前后,查找次数的变化情况。

  • 索引的弊端

1.当数据量很大的时候,索引也会很大(当然相比于源表来说,还是相当小的),也需要存放在内存/硬盘中(通常存放在硬盘中),占据一定的内存空间/物理空间。

2.索引并不适用于所有情况:a.少量数据;b.频繁进行改动的字段,不适合做索引;c.很少使用的字段,不需要加索引;

3.索引会提高数据查询效率,但是会降低“增、删、改”的效率。当不使用索引的时候,我们进行数据的增删改,只需要操作源表即可,但是当我们添加索引后,不仅需要修改源表,也需要再次修改索引,很麻烦。尽管是这样,添加索引还是很划算的,因为我们大多数使用的就是查询,“查询”对于程序的性能影响是很大的。

  • 索引的优势

1.提高查询效率(降低了IO使用率)。当创建了索引后,查询次数减少了。

2.降低CPU使用率。比如说【…order by age desc】这样一个操作,当不加索引,会把源表加载到内存中做一个排序操作,极大的消耗了资源。但是使用了索引以后,第一索引本身就小一些,第二索引本身就是排好序的,左边数据最小,右边数据最大。

  • B+树图示说明

MySQL中索引使用的就是B+树结构。
在这里插入图片描述
关于B+树的说明:

首先,Btree一般指的都是【B+树】,数据全部存放在叶子节点中。对于上图来说,最下面的第3层,属于叶子节点,真实数据部份都是存放在叶子节点当中的。

那么对于第1、2层中的数据又是干嘛的呢?答:用于分割指针块儿的,比如说小于26的找P1,介于26-30之间的找P2,大于30的找P3。

其次,三层【B+树】可以存放上百万条数据。这么多数据怎么放的呢?增加“节点数”。图中我们只有三个节点。

最后,【B+树】中查询任意数据的次数,都是n次,n表示的是【B+树】的高度。

索引的分类与创建

1、索引分类

  • 单值索引 :利用表中的某一个字段创建单值索引。一张表中往往有多个字段,也就是说每一列其实都可以创建一个索引,这个根据我们实际需求来进行创建。还需要注意的一点就是,一张表可以创建多个“单值索引”。
    假如某一张表既有age字段,又有name字段,我们可以分别对age、name创建一个单值索引,这样一张表就有了两个单值索引。
  • 唯一索引:也是利用表中的某一个字段创建单值索引,与单值索引不同的是:创建唯一索引的字段中的数据,不能有重复值。像age肯定有很多人的年龄相同,像name肯定有些人是重名的,因此都不适合创建“唯一索引”。像编号id、学号sid,对于每个人都不一样,因此可以用于创建唯一索引。
  • 复合索引:多个列共同构成的索引。比如说我们创建这样一个“复合索引”(name,age),先利用name进行索引查询,当name相同的时候,我们利用age再进行一次筛选。注意:复合索引的字段并不是非要都用完,当我们利用name字段索引出我们想要的结果以后,就不需要再使用age进行再次筛选了。

2、创建索引

语法:create 索引类型 索引名 on 表(字段);

  • 创建索引的第一种方式
    创建单值索引
create index dept_index on tb(dept);

创建唯一索引:这里我们假定name字段中的值都是唯一的

create unique index name_index on tb(name);

创建复合索引

create index dept_name_index on tb(dept,name);
  • 创建索引的第二种方式
    先删除之前创建的索引以后,再进行这种创建索引方式的测试;

语法:alter table 表名 add 索引类型 索引名(字段)

创建单值索引

alter table tb add index dept_index(dept);

创建唯一索引:这里我们假定name字段中的值都是唯一的

alter table tb add unique index name_index(name);

创建复合索引


alter table tb add index dept_name_index(dept,name);

如果某个字段是primary key,那么该字段默认就是主键索引。

主键索引和唯一索引非常相似。相同点:该列中的数据都不能有相同值;不同点:主键索引不能有null值,但是唯一索引可以有null值。

3、索引删除和索引查询

  • 索引删除

语法:drop index 索引名 on 表名;

drop index name_index on tb;
  • 索引查询

语法:show index from 表名;

show index from tb;

相关文章:

数据库索引的使用

1、MySQL的基本架构 架构图 左边的client可以看成是客户端,客户端有很多,像我们经常你使用的CMD黑窗口,像我们经常用于学习的WorkBench,像企业经常使用的Navicat工具,它们都是一个客户端。右边的这一大堆都可以看成是…...

校验 GPT-4 真实性的三个经典问题:快速区分 GPT-3.5 与 GPT-4,并提供免费测试网站

现在已经有很多 ChatGPT 的套壳网站,以下分享验明 GPT-4 真身的三个经典问题,帮助你快速区分套壳网站背后到底用的是 GPT-3.5 还是 GPT-4。 大家可以在这个网站测试:https://ai.hxkj.vip,免登录可以问三条,登录之后无限…...

SpringBoot整合MongoDB连接池(含源码)

&#x1f4a1;版本依赖 jdk 17 SpringBoot 3.1.0 Mongo 6.0.8 mybatis-plus 2.0.2 &#x1f4a1;环境准备 &#x1f335;MongoDB安装 安装教程请查看&#xff1a;一文搞定(linuxwindowsdocker)安装MongoDB &#x1f335;导入依赖 <parent><groupId>org.sp…...

[oeasy]python0082_[趣味拓展]控制序列_清屏_控制输出位置_2J

光标位置 回忆上次内容 上次了解了键盘演化的过程 ESC 从 组合键到 独立按键 ESC的作用 是 进入 控制序列配置 控制信息控制信息 \033[y;xH 设置光标位置\033[2J 清屏 这到底怎么控制&#xff1f;&#xff1f;&#xff1f;&#x1f914;谁来实现这些功能&#xff1f; 控制…...

Zookeeper+kafka

目录 1. Zookeeper定义 2. Zookeeper工作机制 3. Zookeeper特点 4. Zookeeper数据结构 5. Zookeeper应用场景 5.1 统一命名服务 5.2 统一配置管理 5.3 统一集群管理 5.4 服务器动态上下线 5.5 软负载均衡 6. Zookeeper 选举机制 6.1 第一次启动选举机制 6.2 非第一…...

Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二)

Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二) 在开始这个专栏&#xff0c;我们需要找一个小程序为参考&#xff0c;参考和仿照其界面&#xff0c;聊天交互模式。 这里参考小程序-小柠AI智能聊天&#xff0c;可自行先体验。 该小程序主要提供了…...

Flask进阶:构建RESTful API和数据库交互

在初级教程中&#xff0c;我们已经介绍了如何使用Flask构建基础的Web应用。在本篇中级教程中&#xff0c;我们将学习如何用Flask构建RESTful API&#xff0c;以及如何使用Flask-SQLAlchemy进行数据库操作。 一、构建RESTful API REST&#xff08;Representational State Tran…...

6.9(Java)二叉搜索树

1.我的代码: public class BinarySearchTree {class TreeNode {public int key;public TreeNode left;public TreeNode right;public TreeNode(int key) {this.key key;}}public TreeNode root; // 根节点// 插入一个元素,注意&#xff0c;不能插入重复的值&#xff0c;如…...

洛谷P2256 一中校运会之百米跑

题目背景 在一大堆秀恩爱的 ** 之中&#xff0c;来不及秀恩爱的苏大学神踏着坚定&#xff08;&#xff1f;&#xff09;的步伐走向了 100 100 100 米跑的起点。这时苏大学神发现&#xff0c;百米赛跑的参赛同学实在是太多了&#xff0c;连体育老师也忙不过来。这时体育老师发…...

python-opencv对极几何 StereoRectify

OpenCV如何正确使用stereoRectify函数 函数介绍 用于双目相机的立体校正环节中&#xff0c;这里只谈谈这个函数怎么使用&#xff0c;参数具体指哪些函数参数 随便去网上一搜或者看官方手册就能得到参数信息&#xff0c;但是&#xff01;&#xff01;相对关系非常容易出错&…...

pom文件---maven

027-Maven 命令行-实验四-生成 Web 工程-执行生成_ev_哔哩哔哩_bilibili 27节.后续补充 一.maven下载安装及配置 1)maven下载 2) settings文件配置本地仓库 3)settings配置远程仓库地址 4)配置maven工程的基础JDK版本 5)确认JDK环境变量配置没问题,配置maven的环境变量 验证…...

界面控件DevExpress.Drawing图形库早期增强功能分享

众所周知&#xff0c;DevExpress在v22.2发布周期中引入了全新的DevExpress.Drawing图形库&#xff08;并且已经在随后的小更新中引入了一系列增强功能&#xff09;。 在这篇博文中&#xff0c;我们将总结在DevExpress v23.1中解决的一些问题&#xff0c;以及在EAP构建中为以下…...

Semantic Kernel 入门系列:Connector连接器

当我们使用Native Function的时候&#xff0c;除了处理一些基本的逻辑操作之外&#xff0c;更多的还是需要进行外部数据源和服务的对接&#xff0c;要么是获取相关的数据&#xff0c;要么是保存输出结果。这一过程在Semantic Kernel中可以被归类为Connector。 Connector更像是…...

Maven介绍-下载-安装-使用-基础知识

Maven介绍-下载-安装-使用-基础知识 Maven的进阶高级用法可查看这篇文章&#xff1a; Maven分模块-继承-聚合-私服的高级用法 文章目录 Maven介绍-下载-安装-使用-基础知识01. Maven1.1 初识Maven1.1.1 什么是Maven1.1.2 Maven的作用 02. Maven概述2.1 Maven介绍2.2 Maven模型…...

Ansible环境搭建,CentOS 系列操作系统搭建Ansible集群环境

Ansible是一种自动化工具&#xff0c;基于Python写的&#xff0c;原理什么的就不过多再说了&#xff0c;详情参考&#xff1a;https://www.itwk.cc/post/403.html https://blog.csdn.net/qq_34185638/article/details/131079320?spm1001.2014.3001.5502 环境准备 HOSTNAMEIP…...

Django基础

1.Django基础 路由系统视图模板静态文件和媒体文件中间件ORM&#xff08;时间&#xff09; 2.路由系统 本质上&#xff1a;URL和函数的对应关系。 2.1 传统的路由 from django.contrib import admin from django.urls import path from apps.web import viewsurlpatterns …...

HTML,url,unicode编码

目录标题 HTML实体编码urlcode编码unicode编码小结基础例题高级例题 HTML实体编码 实体表示&#xff1a; 以&符号开始&#xff0c;后面跟着一个预定义的实体的名称&#xff0c;或是一个#符号以及字符的十进制数字。 例&#xff1a; <p>hello</p> <!-- 等同…...

Hbase-热点问题(数据存储倾斜问题)

1. 危害 某一台regionserver消耗过多&#xff0c;承受过多的并发量&#xff0c;时间长机器性能下降&#xff0c;甚至宕机 2. 解决 可以通过设计rowkey预分区的方法解决 比如可以预分区120个&#xff0c;1月的数据存到1-10分区&#xff0c;每个月的数据存到10个分区&#xff…...

一个基于Java线程池管理的开源框架Hippo4j实践

线程池痛点 线程池是一种基于池化思想管理线程的工具&#xff0c;使用线程池可以减少创建销毁线程的开销&#xff0c;避免线程过多导致系统资源耗尽。在高并发以及大批量的任务处理场景&#xff0c;线程池的使用是必不可少的。线程池常见痛点&#xff1a; 线程池随便定义&…...

源码解析Flink源节点数据读取是如何与checkpoint串行执行

文章目录 源码解析Flink源节点数据读取是如何与checkpoint串行执行Checkpoint阶段StreamTask类变量actionExecutor的实现和初始化小结 数据读取阶段小结 总结 源码解析Flink源节点数据读取是如何与checkpoint串行执行 Flink版本&#xff1a;1.13.6 前置知识&#xff1a;源节点…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...

Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)

13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...