【搭建PyTorch神经网络进行气温预测】
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
features = pd.read_csv('temps.csv')#看看数据长什么样子
features.head()
year | month | day | week | temp_2 | temp_1 | average | actual | friend | |
---|---|---|---|---|---|---|---|---|---|
0 | 2016 | 1 | 1 | Fri | 45 | 45 | 45.6 | 45 | 29 |
1 | 2016 | 1 | 2 | Sat | 44 | 45 | 45.7 | 44 | 61 |
2 | 2016 | 1 | 3 | Sun | 45 | 44 | 45.8 | 41 | 56 |
3 | 2016 | 1 | 4 | Mon | 44 | 41 | 45.9 | 40 | 53 |
4 | 2016 | 1 | 5 | Tues | 41 | 40 | 46.0 | 44 | 41 |
数据表中
- year,moth,day,week分别表示的具体的时间
- temp_2:前天的最高温度值
- temp_1:昨天的最高温度值
- average:在历史中,每年这一天的平均最高温度值
- actual:这就是我们的标签值了,当天的真实最高温度
- friend:这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了
print('数据维度:', features.shape)
数据维度: (348, 9)
# 处理时间数据
import datetime# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
dates[:5]
[datetime.datetime(2016, 1, 1, 0, 0),datetime.datetime(2016, 1, 2, 0, 0),datetime.datetime(2016, 1, 3, 0, 0),datetime.datetime(2016, 1, 4, 0, 0),datetime.datetime(2016, 1, 5, 0, 0)]
# 准备画图
# 指定默认风格
plt.style.use('fivethirtyeight')# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45) #x标签倾斜45度# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')plt.tight_layout(pad=2)
# 独热编码
features = pd.get_dummies(features)
features.head(5)
year | month | day | temp_2 | temp_1 | average | actual | friend | week_Fri | week_Mon | week_Sat | week_Sun | week_Thurs | week_Tues | week_Wed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2016 | 1 | 1 | 45 | 45 | 45.6 | 45 | 29 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2016 | 1 | 2 | 44 | 45 | 45.7 | 44 | 61 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 2016 | 1 | 3 | 45 | 44 | 45.8 | 41 | 56 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 2016 | 1 | 4 | 44 | 41 | 45.9 | 40 | 53 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 2016 | 1 | 5 | 41 | 40 | 46.0 | 44 | 41 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
# 标签
labels = np.array(features['actual'])# 在特征中去掉标签
features= features.drop('actual', axis = 1)# 名字单独保存一下,以备后患
feature_list = list(features.columns)# 转换成合适的格式
features = np.array(features)
features.shape
(348, 14)
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]
array([ 0. , -1.5678393 , -1.65682171, -1.48452388, -1.49443549,-1.3470703 , -1.98891668, 2.44131112, -0.40482045, -0.40961596,-0.40482045, -0.40482045, -0.41913682, -0.40482045])
构建网络模型
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-I9ez3tyG-1691437809583)(attachment:image.png)]
#将数据转化为tensor的形式
x = torch.tensor(input_features, dtype = float)y = torch.tensor(labels, dtype = float)# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True) learning_rate = 0.001
losses = []for i in range(1000):# 计算隐层hidden = x.mm(weights) + biases# 加入激活函数hidden = torch.relu(hidden)# 预测结果predictions = hidden.mm(weights2) + biases2# 通计算损失loss = torch.mean((predictions - y) ** 2) losses.append(loss.data.numpy())# 打印损失值if i % 100 == 0:print('loss:', loss)#返向传播计算loss.backward()#更新参数weights.data.add_(- learning_rate * weights.grad.data) biases.data.add_(- learning_rate * biases.grad.data)weights2.data.add_(- learning_rate * weights2.grad.data)biases2.data.add_(- learning_rate * biases2.grad.data)# 每次迭代都得记得清空weights.grad.data.zero_()biases.grad.data.zero_()weights2.grad.data.zero_()biases2.grad.data.zero_()
loss: tensor(4238.8822, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(155.8961, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.9377, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(144.1912, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(142.8590, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(142.0588, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(141.5304, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(141.1626, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(140.8778, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(140.6519, dtype=torch.float64, grad_fn=<MeanBackward0>)
predictions.shape
torch.Size([348, 1])
更简单的构建网络模型
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(torch.nn.Linear(input_size, hidden_size),torch.nn.Sigmoid(),torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# 训练网络
losses = []
for i in range(1000):batch_loss = []# MINI-Batch方法来进行训练for start in range(0, len(input_features), batch_size):end = start + batch_size if start + batch_size < len(input_features) else len(input_features)xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)prediction = my_nn(xx)loss = cost(prediction, yy)optimizer.zero_grad()loss.backward(retain_graph=True)optimizer.step() batch_loss.append(loss.data.numpy())# 打印损失if i % 100==0:losses.append(np.mean(batch_loss))print(i, np.mean(batch_loss))
0 3947.049
100 37.844784
200 35.660378
300 35.282845
400 35.11639
500 34.988346
600 34.87178
700 34.753754
800 34.62929
900 34.49678
预测训练结果
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60');
plt.legend()# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
相关文章:

【搭建PyTorch神经网络进行气温预测】
import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.optim as optim import warnings warnings.filterwarnings("ignore") %matplotlib inlinefeatures pd.read_csv(temps.csv)#看看数据长什么样子 features.head…...

.Net6 Web Core API --- AOP -- log4net 封装 -- MySQL -- txt
目录 一、引入 NuGet 包 二、配置log4net.config 三、编写Log4net封装类 四、编写日志记录类 五、AOP -- 拦截器 -- 封装 六、案例编写 七、结果展示 一、引入 NuGet 包 log4net Microsoft.Extensions.Logging.Log4Net.AspNetCore MySql.Data ---- MySQL…...

【论文阅读】对抗溯源图主机入侵检测系统的模仿攻击(NDSS-2023)
作者:伊利诺伊大学芝加哥分校-Akul Goyal、Gang Wang、Adam Bates;维克森林大学-Xueyuan Han、 引用:Goyal A, Han X, Wang G, et al. Sometimes, You Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detect…...
微信小程序多图片上传实用代码记录
微信小程序多图片上传实用代码记录 由于在小程序中,wx.uploadFile 只能一次上传一张图片,因此在一次需要上传多张图片的应用场景中例如商品图片上传、评论图片上传等场景下,不得不使用for等循环上传每一张图片,多次调用wx.upload…...
android实现获取系统全局对象实例
无需Context获取系统常用全局对象:Application,Activity,PackageManager等。 import android.app.Activity; import android.app.Application; import android.app.Service; import android.content.Context; import android.content.pm.Pac…...

viewerjs 如何新增下载图片功能(npm包补丁)
文章目录 先实现正常的效果实现下载图片改变viewerjs的build函数源码改变之后,执行npm i 之后node_modules源码又变回了原样 1、viwerjs所有功能都很完善,但唯独缺少了图片的下载 2、需求:在用viwerjs旋转图片后,可以直接下载旋转…...

基于YOLOv7开发构建MSTAR雷达影像目标检测系统
MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集是一个基于合成孔径雷达(Synthetic Aperture Radar,SAR)图像的目标检测和识别数据集。它是针对目标检测、机器学习和模式识别算法的研究和评估…...
关于c++中mutable、const、volatile这三个关键字及对应c++与汇编示例源码
这哥三之间的关系是有趣的,不妨看看这个: cv (const and volatile) type qualifiers - cppreference.com mutable permits modification of the class member declared mutable even if the containing object is declared const. 即便一个对象是con…...

把大模型装进手机,分几步?
点击关注 文 | 姚 悦 编 | 王一粟 大模型“跑”进手机,AI的战火已经从“云端”烧至“移动终端”。 “进入AI时代,华为盘古大模型将会来助力鸿蒙生态。”8月4日,华为常务董事、终端BG CEO、智能汽车解决方案BU CEO 余承东介绍,…...

c++游戏制作指南(三):c++剧情类文字游戏的制作
🍿*★,*:.☆( ̄▽ ̄)/$:*.★* 🍿 🍟欢迎来到静渊隐者的csdn博文,本文是c游戏制作指南的一部🍟 🍕更多文章请点击下方链接🍕 🍨 c游戏制作指南dz…...

Flutter系列文章-实战项目
在本篇文章中,我们将通过一个实际的 Flutter 应用来综合运用最近学到的知识,包括保存到数据库、进行 HTTP 请求等。我们将开发一个简单的天气应用,可以根据用户输入的城市名获取该城市的天气信息,并将用户查询的城市列表保存到本地…...
HCIA---TCP/UDP协议
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 目录 文章目录 一.UDP协议简介 UDP协议的特点: 二.TCP协议简介 TCP协议特点 三.TCP和UDP的区别 思维导图 一.UDP协议简介 UDP(User …...

数据库索引的使用
1、MySQL的基本架构 架构图 左边的client可以看成是客户端,客户端有很多,像我们经常你使用的CMD黑窗口,像我们经常用于学习的WorkBench,像企业经常使用的Navicat工具,它们都是一个客户端。右边的这一大堆都可以看成是…...
校验 GPT-4 真实性的三个经典问题:快速区分 GPT-3.5 与 GPT-4,并提供免费测试网站
现在已经有很多 ChatGPT 的套壳网站,以下分享验明 GPT-4 真身的三个经典问题,帮助你快速区分套壳网站背后到底用的是 GPT-3.5 还是 GPT-4。 大家可以在这个网站测试:https://ai.hxkj.vip,免登录可以问三条,登录之后无限…...
SpringBoot整合MongoDB连接池(含源码)
💡版本依赖 jdk 17 SpringBoot 3.1.0 Mongo 6.0.8 mybatis-plus 2.0.2 💡环境准备 🌵MongoDB安装 安装教程请查看:一文搞定(linuxwindowsdocker)安装MongoDB 🌵导入依赖 <parent><groupId>org.sp…...

[oeasy]python0082_[趣味拓展]控制序列_清屏_控制输出位置_2J
光标位置 回忆上次内容 上次了解了键盘演化的过程 ESC 从 组合键到 独立按键 ESC的作用 是 进入 控制序列配置 控制信息控制信息 \033[y;xH 设置光标位置\033[2J 清屏 这到底怎么控制???🤔谁来实现这些功能? 控制…...

Zookeeper+kafka
目录 1. Zookeeper定义 2. Zookeeper工作机制 3. Zookeeper特点 4. Zookeeper数据结构 5. Zookeeper应用场景 5.1 统一命名服务 5.2 统一配置管理 5.3 统一集群管理 5.4 服务器动态上下线 5.5 软负载均衡 6. Zookeeper 选举机制 6.1 第一次启动选举机制 6.2 非第一…...

Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二)
Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二) 在开始这个专栏,我们需要找一个小程序为参考,参考和仿照其界面,聊天交互模式。 这里参考小程序-小柠AI智能聊天,可自行先体验。 该小程序主要提供了…...
Flask进阶:构建RESTful API和数据库交互
在初级教程中,我们已经介绍了如何使用Flask构建基础的Web应用。在本篇中级教程中,我们将学习如何用Flask构建RESTful API,以及如何使用Flask-SQLAlchemy进行数据库操作。 一、构建RESTful API REST(Representational State Tran…...
6.9(Java)二叉搜索树
1.我的代码: public class BinarySearchTree {class TreeNode {public int key;public TreeNode left;public TreeNode right;public TreeNode(int key) {this.key key;}}public TreeNode root; // 根节点// 插入一个元素,注意,不能插入重复的值,如…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...