机器学习基础08-回归算法矩阵分析(基于波士顿房价(Boston House Price)数据集)
回归算法通常涉及到使用矩阵来表示数据和模型参数。线性回归是最常见的回归算法之一,它可以用矩阵形式来表示。
考虑一个简单的线性回归模型: y = m x + b y = mx + b y=mx+b,其中 y y y 是因变量, x x x 是自变量, m m m 是斜率, b b b 是截距。将这个模型表示成矩阵形式,可以如下所示:
在上面的矩阵表达中,左边的矩阵表示因变量 y y y,右边的矩阵表示自变量 x x x 和一个常数项 1 1 1。而模型参数 m m m 和 b b b 则以矩阵的形式表示。
通过最小化残差(观测值与模型预测值之间的差异)来确定最佳的参数 m m m 和 b b b,这通常涉及到矩阵计算中的求解方法,如最小二乘法。
其他更复杂的回归算法,例如多变量线性回归、岭回归、Lasso回归等,也可以通过矩阵表示来进行推导和求解。矩阵表示使得回归算法的计算更加紧凑和易于理解。
接下来将介绍三种评估机器学习的回归算法的评估矩阵。
- 平均绝对误差(Mean Absolute Error,MAE)。
- 均方误差(Mean Squared Error,MSE)。
- 决定系数(R2)。
示例中采用将使用波士顿房价(Boston House Price)数据集进行实验操作
数据集下载地址
https://github.com/selva86/datasets/blob/master/BostonHousing.csv
数据集介绍:
波士顿房价预测更像是预测一个连续值,当然这也是一个非常经典的机器学习案例
平均绝对误差
平均绝对误差是所有单个观测值与算术平均值的偏差的绝对值的平均值。与平均误差相比,平均绝对误差由于离差被绝对值化,不会出现正负相抵消的情况,因而,平均绝对误差能更好地反映预测值误差的实际情况。
代码如下:
import pandas as pd
from sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import KFold, cross_val_score#数据预处理
path = 'D:\down\\BostonHousing.csv'
data = pd.read_csv(path)array = data.valuesX = array[:, 0:13]
Y = array[:, 13]n_splits = 10seed = 7kflod = KFold(n_splits=n_splits, random_state=seed, shuffle=True)
#
model = LinearRegression()scoring = 'neg_mean_absolute_error'results = cross_val_score(model, X, Y, cv=kflod, scoring=scoring)print("MSE: %.3f (%.3f)" % (results.mean(), results.std()))
执行结果如下:
MSE: -3.387 (0.667)
均方误差
均方误差是衡量平均误差的方法,可以评价数据的变化程度。均方根误差是均方误差的算术平方根。均方误差的值越小,说明用该预测模型描述实验数据的准确度越高。
代码如下:
import pandas as pd
from sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import KFold, cross_val_score#数据预处理
path = 'D:\down\\BostonHousing.csv'
data = pd.read_csv(path)array = data.valuesX = array[:, 0:13]
Y = array[:, 13]n_splits = 10seed = 7kflod = KFold(n_splits=n_splits, random_state=seed, shuffle=True)
#
model = LinearRegression()scoring = 'neg_mean_squared_error'results = cross_val_score(model, X, Y, cv=kflod, scoring=scoring)print("MSE: %.3f (%.3f)" % (results.mean(), results.std()))
运行结果如下:
MSE: -23.747 (11.143)
决定系数(R2)
决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比越高,观察点在回归直线附近越密集。
如R2为0.8,则表示回归关系可以解释因变量80%的变异。换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%。
决定系数(R2)的特点:
- 可决系数是非负的统计量。
- 可决系数的取值范围:0≤R2≤1。
- 可决系数是样本观测值的函数,是因随机抽样而变动的随机变量。为
此,对可决系数的统计的可靠性也应进行检验。
代码如下:
import pandas as pd
from sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import KFold, cross_val_score#数据预处理
path = 'D:\down\\BostonHousing.csv'
data = pd.read_csv(path)array = data.valuesX = array[:, 0:13]
Y = array[:, 13]n_splits = 10seed = 7kflod = KFold(n_splits=n_splits, random_state=seed, shuffle=True)
#
model = LinearRegression()scoring = 'r2'results = cross_val_score(model, X, Y, cv=kflod, scoring=scoring)print("R2: %.3f (%.3f)" % (results.mean(), results.std()))
执行结果如下:
R2: 0.718 (0.099)
通常情况下,R2(也称为决定系数)是用来衡量一个回归模型的拟合优度的指标。它的取值范围在0到1之间,越接近1表示模型拟合得越好,越接近0表示模型拟合较差。
在这个结果中,“R2: 0.718” 表示模型的拟合优度为0.718,大致可以理解为模型解释了目标变量约71.8%的方差。而 “(0.099)” 则是标准误差的信息,用于表示R2的置信区间。
相关文章:

机器学习基础08-回归算法矩阵分析(基于波士顿房价(Boston House Price)数据集)
回归算法通常涉及到使用矩阵来表示数据和模型参数。线性回归是最常见的回归算法之一,它可以用矩阵形式来表示。 考虑一个简单的线性回归模型: y m x b y mx b ymxb,其中 y y y 是因变量, x x x 是自变量, m m m 是…...
[英语单词] password, passphrase, passport.... paraphrase
password 是密码,大多可能就是一个单词的量,10多个字母,或者更少;而且就是一个单词; 后来发现密码这么设置不安全,怎么办? 就出现了passphrase,使用词组的组合来做为密码,…...

windows(iis)服务器部署安装wordpress(php)网站教程
该教程包含iis安装,php安装,mysql安装,php网站部署上线,windows服务部署php网站,只需要这一篇文章就够了。 该教程为iis服务器部署安装wordpress(php)网站教程,同样适用wordpress网站迁移。 配置要求 1、windows服务器安装iis windows服务器安装iis管理器 打开控制面…...
ETCD备份还原
备份只需要在一个节点上备就可以了,每个节点上的数据是同步的;但是数据恢复是需要在每个主节点上进行 1.查看证书位置 #查看etcd证书 [rootk8s-master01 manifests]# cat /etc/kubernetes/manifests/kube-apiserver.yaml |grep etcd- --etcd-cafile/et…...

探索CSS计数器:优雅管理网页元素的计数与序号
113. 探索CSS计数器:优雅管理网页元素的计数与序号 在前端开发中,我们经常需要对网页元素进行计数与序号,如有序列表、表格行号、步骤指示等。为了优雅地管理这些计数与序号,CSS提供了一种强大的功能:CSS计数器&#…...
这次一次性通关channel!
一 前言 前几天面试某大厂的云原生岗位,原本是一个轻松愉快的过程,当问到第二个问题,我就发现事情的不对劲,先复盘一下面试官有关Channel的问题,然后再逐一解决,最后进行扩展,这次一定要一次性…...
线程数控制
项目需求:javaMATLAB并行开发 在java中调用由MATLAB转成的jar包的代码,需要调用到底层的MATLAB服务。每次只能一个线程调用,当多个线程同时调用MATLAB时,MATLAB会报错。导致整个java服务挂掉。 现在增加线程控制,每…...

DC-6靶机
先去看看DC-6的官网描述,看看有没有给出提示信息 把这个线索信息先复制下来 cat /usr/share/wordlists/rockyou.txt | grep k01 > passwords.txt开始前先要吧 kali和DC-6靶机放在统一网段,都换成NAT模式 然后看一下DC-6的MAC地址 靶机的MAC地址00…...

SpringCloud入门Day01-服务注册与发现、服务通信、负载均衡与算法
SpringCloudNetflix入门 一、应用架构的演变 伴随互联网的发展,使用互联网的人群越来越多,软件应用的体量越来越大和复杂。而传统单体应用 可能不足以支撑大数据量以及发哦并发场景应用的框架也随之进行演变从最开始的单体应用架构到分布式(…...

java-IDEA MAVEN查看依赖树,解决jar包重复和冲突
如果这里面的依赖关系有红线,就说明有包冲突,一般都是版本不一致,可以在idea里下一个插件Maven Helper,点击install并重启IDEA 打开pom.xml文件,在下方会出现Dependency Analyzer,选择它会出现重复依赖列表,选择对应的依赖,右键红…...

参考RabbitMQ实现一个消息队列
文章目录 前言小小消息管家1.项目介绍2. 需求分析2.1 API2.2 消息应答2.3 网络通信协议设计 3. 开发环境4. 项目结构介绍4.1 配置信息 5. 项目演示 前言 消息队列的本质就是阻塞队列,它的最大用途就是用来实现生产者消费者模型,从而实现解耦合以及削峰填…...
SpringBoot+JWT
一、maven坐标 <!-- JWT依赖 --><dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></dependency><dependency><groupId>com.auth0</groupId>&…...
Cad二次开发EqualPoint
在 CAD 软件的二次开发中,Tolerance.Global.EqualPoint 是一个特定的属性或方法,用于表示全局的相等性公差值。这个属性或方法通常是由 CAD 软件的开发平台或 API 提供的,用于处理浮点数的相等性比较。 具体来说,Tolerance.Globa…...

20230806将ASF格式的视频转换为MP4
20230806将ASF格式的视频转换为MP4 2023/8/6 18:47 缘起,自考中山大学的《计算机网络》,考试《数据库系统原理》的时候找到视频,由于个人的原因,使用字幕更加有学习效率! 由于【重型】的PR2023占用资源较多,…...
【MySQL】——常用接口API即相关函数说明
目录 1、MySQL结构体的说明 1、MYSQL结构体 2.MYSQL_RES结构体 3. MYSQL_FIELD 2. 接口的使用步骤 3、mysql_init()——MYSQL对象初始化 4、mysql_real_connect()——数据库引擎建立连接 5. mysql_query()——查询数据库某表内容 6、mysql_real_query——执行SQL语句 …...
ts + axios + useRequest (ahooks)—— 实现请求封装
现在越来越多的项目开始ts化,我们今天就一块学习一下,关于ts的请求封装。 首先要安装两个依赖: npm i axios -S npm i ahooks -S 引入: import { useRequest } from ahooks; import axios, { AxiosRequestConfig, AxiosRespo…...

Springboot @Validated注解详细说明
在Spring Boot中,Validated注解用于验证请求参数。它可以应用在Controller类或方法上 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId> </depen…...
STM32初学者,到底选标准库还是HAL库?
当初学者尝试学习STM32开发时,通常会面临一个关键的选择:是选择STM32的标准库,还是HAL库?这两个库各自有着优势与适用场景,本文将从多个角度分析,帮助初学者更好地选择适合自己的库。 在开始之前ÿ…...

小学生作业随机加减乘除运算计算习题答案 html源码
小学生作业随机加减乘除运算计算习题答案 html源码 这道题目提供了多种选项,包括运算符和输入的运算数范围。题目数量也可以选择。如果你选择好了选项,就可以点击出题按钮进行练习。 为了方便,题目答案可以打印出来。但是,如果隐藏了横线,就会去除等号后面的下划线。推荐使用…...

nvm下载安装配置
一、作用 nvm是node版本管理的工具,具有管理、下载、切换node版本等能力。经常不同项目需要依赖不同版本的node,此时nvm就能有效的解决node版本切换的问题。 二、nvm下载安装配置 (1)安装包地址 https://github.com/coreybutl…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...