当前位置: 首页 > news >正文

【深度学习】在 MNIST实现自动编码器实践教程

一、说明

        自动编码器是一种无监督学习的神经网络模型,主要用于降维或特征提取。常见的自动编码器包括基本的单层自动编码器、深度自动编码器、卷积自动编码器和变分自动编码器等。

        其中,基本的单层自动编码器由一个编码器和一个解码器组成,编码器将输入数据压缩成低维数据,解码器将低维数据还原成原始数据。深度自动编码器是在单层自动编码器的基础上增加了多个隐藏层,可以实现更复杂的特征提取。卷积自动编码器则是针对图像等数据特征提取的一种自动编码器,它使用卷积神经网络进行特征提取和重建。变分自动编码器则是一种生成式模型,可以用于生成新的数据样本。

        总的来说,不同类型的自动编码器适用于不同类型的数据和问题,选择合适的自动编码器可以提高模型的性能。

二、在Minist数据集实现自动编码器

2.1 概述

        本文中的代码用于在 MNIST 数据集上训练自动编码器。自动编码器是一种旨在重建其输入的神经网络。在此脚本中,自动编码器由两个较小的网络组成:编码器和解码器。编码器获取输入图像,将其压缩为 64 个特征,并将编码表示传递给解码器,然后解码器重建输入图像。自动编码器通过最小化重建图像和原始图像之间的均方误差来训练。该脚本首先加载 MNIST 数据集并规范化像素值。然后,它将图像重塑为一维表示,以便可以将其输入神经网络。之后,使用tensorflow.keras库中的输入层和密集层创建编码器和解码器模型。自动编码器模型是通过链接编码器和解码器模型创建的。然后使用亚当优化器和均方误差损失函数编译自动编码器。最后,自动编码器在归一化和重塑的MNIST图像上训练25个epoch。通过绘制训练集和测试集在 epoch 上的损失来监控训练进度。训练后,脚本绘制一些测试图像及其相应的重建。此外,还计算了原始图像和重建图像之间的均方误差和结构相似性指数(SSIM)。

        下图显示了模型的良好拟合,可以看到模型的良好拟合。

训练和测试数据的模型丢失

        该代码比较两个图像,一个来自测试集的原始图像和一个由自动编码器生成的预测图像。它使用该函数计算两个图像之间的均方误差 (MSE),并使用 scikit-image 库中的函数计算两个图像之间的结构相似性指数 (SSIM)。根据 mse 和 ssim 代码检索test_labels以打印测试图像的值。msessim

2.2 代码实现

import numpy as np
import tensorflow
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Flatten
from tensorflow.keras.layers import Layer 
from skimage import metrics
## import os can be skipped if there is nocompatibility issue 
## with the OpenMP library and TensorFlow 
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# Load the MNIST dataset
(x_train, train_labels), (x_test, test_labels) = mnist.load_data()# Normalize the data
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.# Flatten the images
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))# Randomize both the training and test
permutation = np.random.permutation(len(x_train))
x_train, train_labels = x_train[permutation], train_labels[permutation]
permutation = np.random.permutation(len(x_test))
x_test, test_labels = x_test[permutation], test_labels[permutation]
# Create the encoderlist_xtest = [ [x_test[i], test_labels[i]] for i in test_labels] 
print(len(list_xtest)) encoder_input = Input(shape=(784,))
encoded = Dense(64, activation='relu')(encoder_input)
encoder = Model(encoder_input, encoded)# Create the decoder
decoder_input = Input(shape=(64,))
decoded = Dense(784, activation='sigmoid')(decoder_input)
decoder = Model(decoder_input, decoded)# Create the autoencoder
autoencoder = Model(encoder_input, decoder(encoder(encoder_input)))lr_schedule = tensorflow.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate = 5e-01, decay_steps = 2500, decay_rate = 0.75,staircase=True) 
tensorflow.keras.optimizers.Adam(learning_rate = lr_schedule,beta_1=0.95,beta_2=0.99,epsilon=1e-01)
autoencoder.compile(optimizer='adam', loss='mean_squared_error')# Train the autoencoder
history = autoencoder.fit(x_train, x_train,epochs=25,batch_size=512,shuffle=True,validation_data=(x_test, x_test))# Plot the training history
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper right')
plt.show()# Plot the test figures vs. predicted figures
decoded_imgs = autoencoder.predict(x_test)def mse(imageA, imageB):err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)err /= float(imageA.shape[0])return errdef ssim(imageA, imageB):return metrics.structural_similarity(imageA, imageB,channel_axis=None)decomser = [] 
decossimr = [] 
n = 10
list_xtestn = [ [x_test[i], test_labels[i]] for i in range(10)] 
print([list_xtestn[i][1] for i in range(n)]) 
plt.figure(figsize=(20, 4))
for i in range(n):# Display originalax = plt.subplot(2, n, i + 1)plt.imshow(x_test[i].reshape(28, 28))plt.gray()ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)# Display reconstructionax = plt.subplot(2, n, i + 1 + n)plt.imshow(decoded_imgs[i].reshape(28, 28))plt.gray()ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)if mse(list_xtestn[i][0],decoded_imgs[i]) <= 0.01: msel = mse(list_xtestn[i][0],decoded_imgs[i])decomser.append(list_xtestn[i][1])  if ssim(list_xtestn[i][0],decoded_imgs[i]) > 0.85:ssiml = ssim(list_xtestn[i][0],decoded_imgs[i])decossimr.append(list_xtestn[i][1])   print("mse and ssim for image %s are %s and %s" %(i,msel,ssiml)) 
plt.show() print(decomser)
print(decossimr)

三、实验的部分结果示例 

        该模型可以预测手写数据,如下所示。

原始数据和预测数据

        此外,使用MSE和ssim方法将预测图像与测试图像进行比较,可以访问test_labels并打印预测数据。

预测和测试图像的 MSE 和 SSM 值,以及 SSE 和 SSIM 方法test_labels返回的数字列表

        此代码演示如何使用自动编码器通过图像比较教程来训练和建立手写识别网络。一开始,训练和测试图像是随机的,因此每次运行的图像集都不同。

        在另一篇文章中,我们将展示如何使用 Padé 近似值作为自动编码器 (link.medium.com/cqiP5bd9ixb) 的激活函数。

引用:

  1. 原始的MNIST数据集:LeCun,Y.,Cortes,C.和Burges,C.J.(2010)。MNIST手写数字数据库。AT&T 实验室 [在线]。可用: http://yann。莱昆。com/exdb/mnist/
  2. 自动编码器概念和应用:Hinton,G.E.和Salakhutdinov,R.R.(2006)。使用神经网络降低数据的维数。科学, 313(5786), 504–507.
  3. 使用自动编码器进行图像重建:Masci,J.,Meier,U.,Cireşan,D.和Schmidhuber,J.(2011年52月)。用于分层特征提取的堆叠卷积自动编码器。在人工神经网络国际会议(第 59-<> 页)中。施普林格,柏林,海德堡。
  4. The tensorflow.keras library: Chollet, F. (2018).使用 Python 进行深度学习。纽约州谢尔特岛:曼宁出版公司
  5. 均方误差损失函数和亚当优化器:Kingma,D.P.和Ba,J.(2014)。Adam:一种随机优化的方法。arXiv预印本arXiv:1412.6980。
  6. 结构相似性指数(SSIM):Wang,Z.,Bovik,A.C.,Sheikh,H.R.和Simoncelli,E.P.(2004)。图像质量评估:从错误可见性到结构相似性。IEEE图像处理事务,13(4),600-612。
  7. 弗朗西斯·贝尼斯坦特

    ·

相关文章:

【深度学习】在 MNIST实现自动编码器实践教程

一、说明 自动编码器是一种无监督学习的神经网络模型&#xff0c;主要用于降维或特征提取。常见的自动编码器包括基本的单层自动编码器、深度自动编码器、卷积自动编码器和变分自动编码器等。 其中&#xff0c;基本的单层自动编码器由一个编码器和一个解码器组成&#xff0c;编…...

SpringBoot3基础用法

技术和工具「!喜新厌旧」 一、背景 最近在一个轻量级的服务中&#xff0c;尝试了最新的技术和工具选型&#xff1b; 即SpringBoot3&#xff0c;JDK17&#xff0c;IDEA2023&#xff0c;Navicat16&#xff0c;虽然新的技术和工具都更加强大和高效&#xff0c;但是适应采坑的过程…...

6、移除链表元素

方法1&#xff1a;原链表删除元素 伪代码&#xff1a; 首先判断头节点是否是待删除元素。&#xff08;头节点和其他节点的删除方法不一样&#xff09; while(head ! null && head->value target) //如果链表为 1 1 1 1 1&#xff0c;要删除元素1时用if就会失效 {h…...

大厂容器云实践之路(一)

1-华为CCE容器云实践 华为企业云 | CCE容器引擎实践 ——从IaaS到PaaS到容器集群 容器部署时代的来临 IaaS服务如日中天 2014-2015年&#xff0c;大家都在安逸的使用IaaS服务&#xff1b; 亚马逊AWS的部署能力方面比所有竞争对手…...

《合成孔径雷达成像算法与实现》Figure3.1

代码复现如下&#xff1a; clc close all clear all%参数设置 B 5.80e6; %信号带宽 T 7.26e-6; %脉冲持续时间 K B/T; %线性调频频率 alpha 5; %过采样率 F alpha*B; %采样频率 N F*T; %采样点数 dt T/N; …...

代码随想录算法训练营day60

文章目录 Day60 柱状图中最大的矩形题目思路代码 Day60 柱状图中最大的矩形 84. 柱状图中最大的矩形 - 力扣&#xff08;LeetCode&#xff09; 题目 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图…...

Modbus TCP转Profibus DP网关modbus tcp报文解析

捷米JM-DPM-TCP网关。在Profibus总线侧作为主站&#xff0c;在以太网侧作为ModbusTcp服务器功能&#xff0c; 下面是介绍捷米JM-DPM-TCP主站网关组态工具的配置方法 2, Profibus主站组态工具安装 执行资料光盘中的安装文件setup64.exe或setup.exe安装组态工具。安装过程中一直…...

对 Promise 的理解

Promise 是异步编程的一种解决方案&#xff0c;它是一个对象&#xff0c;可以获取异步 操作的消息&#xff0c;他的出现大大改善了异步编程的困境&#xff0c;避免了地狱回调&#xff0c; 它比传统的解决方案回调函数和事件更合理和更强大。 所谓 Promise&#xff0c;简单说就…...

Vuex:Vue.js应用程序的状态管理模式

介绍 在Vue.js应用程序中&#xff0c;随着项目复杂度的增加&#xff0c;组件之间的数据共享和管理变得困难。为了解决这个问题&#xff0c;Vue.js提供了一个名为Vuex的状态管理模式。Vuex可以帮助我们更有效地组织、管理和共享应用程序的状态。 什么是Vuex&#xff1f; Vuex…...

Unity之ShaderGraph 节点介绍 Utility节点

Utility 逻辑All&#xff08;所有分量都不为零&#xff0c;返回 true&#xff09;Any&#xff08;任何分量不为零&#xff0c;返回 true&#xff09;And&#xff08;A 和 B 均为 true&#xff09;Branch&#xff08;动态分支&#xff09;Comparison&#xff08;两个输入值 A 和…...

springboot()—— swagger

零、一张图读懂swagger 懂了&#xff0c;这玩意就是用swagger搞出来的&#xff01; 就是一个后端开发自测的东西嘛&#xff01; 一、概念 存在即合理&#xff0c;我们看一下swagger诞生的原因&#xff1a;在前后端分离的架构中&#xff0c;前端新增一个字段&#xff0c;后端就…...

Java课题笔记~ 关联映射

一、MyBatis关联查询 在关系型数据库中&#xff0c;表与表之间存在着3种关联映射关系&#xff0c;分别为一对一、一对多、多对多。 一对一&#xff1a;一个数据表中的一条记录最多可以与另一个数据表中的一条记录相关。列如学生与学号就属于一对一关系。 一对多&#xff1a;主…...

一零六七、JVM梳理

JVM&#xff1f; Java虚拟机&#xff0c;可以理解为Java程序的运行环境&#xff0c;可以执行Java字节码&#xff08;Java bytecode&#xff09;并提供了内存管理、垃圾回收、线程管理等功能 java内存区域划分?每块内存中都对应什么? 方法区&#xff1a;类的结构信息、常量池、…...

【CSS】网格布局(简单布局、网格合并、网格嵌套)

文章目录 CSS网格布局&#xff08;Grid Layout&#xff09;1. 简单布局2. 网格合并3. 网格嵌套4. 总结 CSS网格布局&#xff08;Grid Layout&#xff09; CSS网格布局&#xff08;Grid Layout&#xff09;是一种强大且灵活的CSS布局系统&#xff0c;允许开发者以网格形式组织和…...

06 Ubuntu22.04上的miniconda3安装、深度学习常用环境配置

下载脚本 我依然是在清华镜像当中寻找的脚本。这里找脚本真的十分方便&#xff0c;我十分推荐。 wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh 下载十分快速&#xff0c;10秒解决问题 运行miniconda3安装脚本 赋予执…...

【CSS3】CSS3 动画 ② ( 动画序列 | 使用 from 和 to 定义动画序列 | 定义多个动画节点 | 代码示例 )

文章目录 一、动画序列二、代码示例 - 使用 from 和 to 定义动画序列三、代码示例 - 定义多个动画节点 一、动画序列 定义动画时 , 需要设置动画序列 , 下面的 0% 和 100% 设置的是 动画 在 运行到某个 百分比节点时 的 标签元素样式状态 ; keyframes element-move { 0% { tr…...

最优化:建模、算法与理论

最优化&#xff1a;建模、算法与理论 目前在学习 最优化&#xff1a;建模、算法与理论这本书&#xff0c;来此记录一下&#xff0c;顺便做一些笔记&#xff0c;在其中我也会加一些自己的理解&#xff0c;尽量写的不会那么的条条框框&#xff08;当然最基础的还是要有&#xff…...

拿捏--->打印菱形

文章目录 题目描述算法思路代码示例 题目描述 在屏幕上输出以下图案&#xff1a; 算法思路 代码示例 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> int main() {int n;scanf("%d", &n);//上半部分菱形for (int i 0; i < n; i) //上半部分…...

【SpringBoot笔记】定时任务(cron)

定时任务就是在固定的时间执行某个程序&#xff0c;闹钟的作用。 1.在启动类上添加注解 EnableScheduling 2.创建定时任务类 在这个类里面使用表达式设置什么时候执行 cron 表达式&#xff08;也叫七子表达式&#xff09;&#xff0c;设置执行规则 package com.Lijibai.s…...

Redis单机,主从,哨兵,集群四大模式

Redis 单机模式 Redis 单机模式是指 Redis 数据库在单个服务器上以独立的、单一的进程运行的模式。在这种模式下&#xff0c;Redis 不涉及数据分片或集群配置&#xff0c;所有的数据和操作都在一个实例中进行。以下是关于 Redis 单机模式的详细介绍&#xff1a; 单一实例&#…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...