无脑入门pytorch系列(二)—— torch.mean
本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。
目录
- 官方定义
- demo
- 不配置任何参数
- 设置按维度求平均
- 设置keepdim=True
- 总结
官方定义
顾名思义,torch.mean返回输入张量中所有元素的平均值:
def mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor:
上述的源码的定义,看起来参数十分多,但实际只需要记住下面几个参数:
- input,输出是一个张量(tensor),注意如果不是tensor可以通过
torch.tensor
转换为tensor - dim,取平均值的维度,默认值是对tensor里的所有元素取平均值
- keepdim,即保留张量的维度,因为取平均值后肯定是降维的,但是keepdim=True可以使得输出张量的维度与输入张量保持一致
官方的文档如下,torch.mean
demo
看下面一个例子:
matrix = [[1, 2, 3],[4, 5, 6],[7, 8, 9]]tensor = torch.tensor(matrix)
print(tensor)
输出的结果:
直接求mean:
torch.mean(tensor)
出现错误:RuntimeError: mean(): could not infer output dtype. Input dtype must be either a floating point or complex dtype. Got: Long
意思是mean(),只能接受浮点数或复数类型的张量作为输入,所以先将tensor转化为float:
tensor = tensor.float()
不配置任何参数
直接使用torch.mean():
torch.mean(tensor)
输出的结果正好是1+2+…+9的平均值是5,所以如果不设置任何参数,那么默认取各个维度的平均值。
设置按维度求平均
维度0:
torch.mean(tensor, dim=0)
可以理解为矩阵按列求平均值。
维度0:
torch.mean(tensor, dim=0)
可以理解为矩阵按行求平均值。
设置keepdim=True
torch.mean(tensor, dim=0, keepdim=True)
其实就是在torch.mean(tensor, dim=0)
的基础上,输出的一位张量上加上一对[]从而变为二维张量。
因为之前是按列求和,所以最后压缩为一行,然后补充行。
torch.mean(tensor, dim=1, keepdim=True)
而dim=1是按行计算平均值,最后压缩的是列。
总结
torch.mean是个比较简单的函数,但是需要明白以下两点:
- 第二个参数dim,决定了按哪个维度进行计算
- 第三个参数keepdim,可以将输出张量的维度与输入张量保持一致
相关文章:

无脑入门pytorch系列(二)—— torch.mean
本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思…...
ansible-kubeadm在线安装高可用K8S集群v1.19-v1.20版本
ansible可以安装的KS8版本如下: 请按照此博客中的内容操作后,才可以通过下面的命令查询到版本。 [rootk8s-master01 ~]# yum list kubectl --showduplicates | sort -r kubectl.x86_64 1.20.0-0 kubern…...
Cesium entity 渐隐渐显、闪烁
点entity function f2(){var x1;var flogtrue;//闪烁//var x0;var flogfalse;//渐显viewer.entities.add({name:"圆点point闪烁",position:Cesium.Cartesian3.fromDegrees(116.200.03,39.530.03,0),point : {show : true, // defaultcolor :new Cesium.CallbackProp…...

LISA:通过大语言模型进行推理分割
论文:https://arxiv.org/pdf/2308.00692 代码:GitHub - dvlab-research/LISA 摘要 尽管感知系统近年来取得了显著的进步,但在执行视觉识别任务之前,它们仍然依赖于明确的人类指令来识别目标物体或类别。这样的系统缺乏主动推理…...

opencv基础40-礼帽运算(原始图像减去其开运算)cv2.MORPH_TOPHAT
礼帽运算是用原始图像减去其开运算图像的操作。礼帽运算能够获取图像的噪声信息,或者得到比原始图像的边缘更亮的边缘信息。 例如,图 8-22 是一个礼帽运算示例,其中: 左图是原始图像。中间的图是开运算图像。右图是原始图像减开运…...
php中的array_filter()函数
php中的array_filter()函数用于筛选数组中的元素,并返回一个新的数组,新数组的元素是所有返回值为true的原数组元素。 array_filter()函数的使用语法如下: array_filter ( array $array [, callable $callback [, int $flag 0 ]] ) : array…...

ArcGIS Pro基础:【按顺序编号】工具实现属性字段的编号自动赋值
本次介绍一个字段的自动排序编号赋值工具,基于arcgis 的字段计算器工具也可以实现类似功能,但是需要自己写一段代码实现, 相对而言不是很方便。 如下所示,该工具就是【编辑】下的【属性】下的【按顺序编号】工具。 其操作方法是…...

neo4j终端操作
1】进入容器 (base) xiaokkkxiaokkkdeMacBook-Pro ~ % docker exec -it 77ed5fe2b52e /bin/bash 2】启动、停止neo4j root77ed5fe2b52e:/var/lib/neo4j/bin# ./neo4j start Neo4j is already running (pid:7). Run with --verbose for a more detailed error message.root7…...

【深度学习】在 MNIST实现自动编码器实践教程
一、说明 自动编码器是一种无监督学习的神经网络模型,主要用于降维或特征提取。常见的自动编码器包括基本的单层自动编码器、深度自动编码器、卷积自动编码器和变分自动编码器等。 其中,基本的单层自动编码器由一个编码器和一个解码器组成,编…...

SpringBoot3基础用法
技术和工具「!喜新厌旧」 一、背景 最近在一个轻量级的服务中,尝试了最新的技术和工具选型; 即SpringBoot3,JDK17,IDEA2023,Navicat16,虽然新的技术和工具都更加强大和高效,但是适应采坑的过程…...
6、移除链表元素
方法1:原链表删除元素 伪代码: 首先判断头节点是否是待删除元素。(头节点和其他节点的删除方法不一样) while(head ! null && head->value target) //如果链表为 1 1 1 1 1,要删除元素1时用if就会失效 {h…...

大厂容器云实践之路(一)
1-华为CCE容器云实践 华为企业云 | CCE容器引擎实践 ——从IaaS到PaaS到容器集群 容器部署时代的来临 IaaS服务如日中天 2014-2015年,大家都在安逸的使用IaaS服务; 亚马逊AWS的部署能力方面比所有竞争对手…...

《合成孔径雷达成像算法与实现》Figure3.1
代码复现如下: clc close all clear all%参数设置 B 5.80e6; %信号带宽 T 7.26e-6; %脉冲持续时间 K B/T; %线性调频频率 alpha 5; %过采样率 F alpha*B; %采样频率 N F*T; %采样点数 dt T/N; …...

代码随想录算法训练营day60
文章目录 Day60 柱状图中最大的矩形题目思路代码 Day60 柱状图中最大的矩形 84. 柱状图中最大的矩形 - 力扣(LeetCode) 题目 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图…...

Modbus TCP转Profibus DP网关modbus tcp报文解析
捷米JM-DPM-TCP网关。在Profibus总线侧作为主站,在以太网侧作为ModbusTcp服务器功能, 下面是介绍捷米JM-DPM-TCP主站网关组态工具的配置方法 2, Profibus主站组态工具安装 执行资料光盘中的安装文件setup64.exe或setup.exe安装组态工具。安装过程中一直…...
对 Promise 的理解
Promise 是异步编程的一种解决方案,它是一个对象,可以获取异步 操作的消息,他的出现大大改善了异步编程的困境,避免了地狱回调, 它比传统的解决方案回调函数和事件更合理和更强大。 所谓 Promise,简单说就…...
Vuex:Vue.js应用程序的状态管理模式
介绍 在Vue.js应用程序中,随着项目复杂度的增加,组件之间的数据共享和管理变得困难。为了解决这个问题,Vue.js提供了一个名为Vuex的状态管理模式。Vuex可以帮助我们更有效地组织、管理和共享应用程序的状态。 什么是Vuex? Vuex…...

Unity之ShaderGraph 节点介绍 Utility节点
Utility 逻辑All(所有分量都不为零,返回 true)Any(任何分量不为零,返回 true)And(A 和 B 均为 true)Branch(动态分支)Comparison(两个输入值 A 和…...

springboot()—— swagger
零、一张图读懂swagger 懂了,这玩意就是用swagger搞出来的! 就是一个后端开发自测的东西嘛! 一、概念 存在即合理,我们看一下swagger诞生的原因:在前后端分离的架构中,前端新增一个字段,后端就…...

Java课题笔记~ 关联映射
一、MyBatis关联查询 在关系型数据库中,表与表之间存在着3种关联映射关系,分别为一对一、一对多、多对多。 一对一:一个数据表中的一条记录最多可以与另一个数据表中的一条记录相关。列如学生与学号就属于一对一关系。 一对多:主…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...

高效的后台管理系统——可进行二次开发
随着互联网技术的迅猛发展,企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心,成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统,它不仅支持跨平台应用,还能提供丰富…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...

Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...

作为点的对象CenterNet论文阅读
摘要 检测器将图像中的物体表示为轴对齐的边界框。大多数成功的目标检测方法都会枚举几乎完整的潜在目标位置列表,并对每一个位置进行分类。这种做法既浪费又低效,并且需要额外的后处理。在本文中,我们采取了不同的方法。我们将物体建模为单…...