BpBinder与PPBinder调用过程——Android开发Binder IPC通信技术
在Android系统中,进程间通信(IPC)是一个非常重要的话题。Android系统通过Binder IPC机制实现进程间通信,而Binder IPC通信技术则是Android系统中最为重要的进程间通信技术之一。本文将介绍Binder IPC通信技术的原理,并详细解析BpBinder与PPBinder调用过程的使用以及注意事项。
一、Binder IPC通信技术原理:
Binder IPC通信技术是Android系统中的一种高效的跨进程通信技术,它通过Binder驱动提供的底层机制来实现进程间的通信。Binder IPC通信技术的原理如下:
- Binder驱动: Binder驱动是Binder IPC通信技术的核心,它是一个位于内核空间的模块,负责处理进程间的通信请求。Binder驱动提供了一组系统调用接口,用于创建、注册、查找和销毁Binder对象,以及处理进程间的通信请求。
- Binder对象: 在Binder IPC通信技术中,进程间通信的基本单位是Binder对象。每个Binder对象都有一个唯一的标识符,称为Binder引用。Binder对象可以是服务端的Binder对象,也可以是客户端的Binder对象。服务端的Binder对象负责提供某种服务,而客户端的Binder对象则负责调用服务端提供的服务。
- Binder通信机制: 在Binder IPC通信技术中,通信的过程可以简单描述为以下几个步骤: (1)服务端创建Binder对象,并将其注册到Binder驱动中。 (2)客户端通过Binder引用找到服务端的Binder对象。 (3)客户端通过服务端的Binder对象调用相应的服务。 (4)服务端接收到客户端的调用请求,并处理请求。 (5)服务端将处理结果返回给客户端。
二、BpBinder与PPBinder调用过程:
BpBinder和PPBinder是Binder IPC通信技术中的两个重要的概念。BpBinder是客户端的Binder代理对象,用于向服务端发送调用请求;PPBinder是服务端的Binder代理对象,用于接收客户端的调用请求并处理。
- BpBinder调用过程: (1)客户端通过Binder引用找到服务端的Binder对象。 (2)客户端通过BpBinder的代理方法向服务端发送调用请求。 (3)BpBinder将调用请求封装成一个Parcel对象,并通过Binder驱动将Parcel对象发送给服务端。 (4)服务端的PPBinder接收到Parcel对象后,将其解析成调用请求,并调用相应的服务。 (5)服务端将处理结果封装成Parcel对象,并通过Binder驱动将Parcel对象发送给客户端。 (6)BpBinder接收到Parcel对象后,将其解析成处理结果,并返回给客户端。
- PPBinder调用过程:
(1)服务端创建一个继承自Binder类的子类,并重写其onTransact()方法。在该方法中,服务端根据接收到的调用请求进行相应的处理,并将处理结果封装成Parcel对象返回给客户端。 (2)服务端将创建的Binder对象注册到Binder驱动中,以便客户端能够通过Binder引用找到该Binder对象。 (3)客户端通过Binder引用找到服务端的Binder对象。 (4)客户端通过BpBinder的代理方法向服务端发送调用请求。 (5)BpBinder将调用请求封装成一个Parcel对象,并通过Binder驱动将Parcel对象发送给服务端。 (6)服务端的PPBinder接收到Parcel对象后,将其解析成调用请求,并调用相应的服务。 (7)服务端将处理结果封装成Parcel对象,并通过Binder驱动将Parcel对象发送给客户端。 (8)BpBinder接收到Parcel对象后,将其解析成处理结果,并返回给客户端。
三、BpBinder与PPBinder实战解析
在使用BpBinder与PPBinder进行调用过程时,需要注意以下几点:
- 使用BpBinder与PPBinder进行调用过程时,需要保证服务端的Binder对象已经注册到Binder驱动中,并且客户端能够通过Binder引用找到该Binder对象。
- BpBinder是客户端的Binder代理对象,可以通过其代理方法向服务端发送调用请求。在使用BpBinder进行调用时,需要注意传递的参数类型和顺序与服务端的方法定义保持一致。
- PPBinder是服务端的Binder代理对象,用于接收客户端的调用请求并处理。在使用PPBinder进行调用时,需要重写onTransact()方法,并根据接收到的调用请求进行相应的处理。
- 在调用过程中,BpBinder将调用请求封装成Parcel对象,并通过Binder驱动将Parcel对象发送给服务端。而PPBinder接收到Parcel对象后,将其解析成调用请求,并调用相应的服务。因此,需要确保调用请求和处理结果都能够正确地封装成Parcel对象,并且Parcel对象能够正确地在客户端和服务端之间进行传输。
- 在BpBinder与PPBinder调用过程中,需要注意处理异常情况。例如,当服务端无法处理客户端的调用请求时,需要抛出相应的异常并返回给客户端。
示例代码如下:
服务端代码:
public class MyService extends Service {private final Binder mBinder = new MyBinder();
private class MyBinder extends Binder {@Overrideprotected boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws RemoteException {switch (code) {case 1: // 调用请求的标识符 int arg1 = data.readInt(); // 解析调用请求的参数 int result = processRequest(arg1); // 处理调用请求 reply.writeInt(result); // 将处理结果封装成Parcel对象返回给客户端 return true;default:return super.onTransact(code, data, reply, flags);}}}private int processRequest(int arg1) {// 处理调用请求的逻辑 return arg1 * 2;}@Nullable@Overridepublic IBinder onBind(Intent intent) {return mBinder;}
}
客户端代码:
```javapublic class MyClientActivity extends Activity {private IService mService;
private ServiceConnection mConnection = new ServiceConnection() {@Overridepublic void onServiceConnected(ComponentName componentName, IBinder iBinder) {mService = IService.Stub.asInterface(iBinder);}
@Overridepublic void onServiceDisconnected(ComponentName componentName) {mService = null;}};
@Override protected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.activity_main);
Intent intent = new Intent(this, MyService.class);bindService(intent, mConnection, BIND_AUTO_CREATE);
// 调用服务端的方法try {int result = mService.processRequest(10);Log.d(TAG, "Result: " + result);} catch (RemoteException e) {e.printStackTrace();}}
@Overrideprotected void onDestroy() {super.onDestroy();unbindService(mConnection);}
}
本文主要解析在Android开发的Binder IPC通信中的重要技术点,BpBinder与PPBinder调用过程解析,更多有关Android开发技术,深入了解Binder技术可以参考《Binder手册》点击可查看详细类目。
注意事项:
- 在服务端的MyBinder类中,需要重写onTransact()方法,并根据接收到的调用请求进行相应的处理。在示例代码中,我们通过code参数来判断调用请求的标识符,然后解析调用请求的参数,并调用processRequest()方法处理请求。
- 在客户端的ServiceConnection中,我们通过asInterface()方法将IBinder对象转换为IService对象,以便我们可以调用服务端的方法。
- 在客户端的onCreate()方法中,我们先绑定服务端的Service,然后通过mService对象调用服务端的processRequest()方法,并打印处理结果。
总结:
本文介绍了Binder IPC通信技术的原理,并详细解析了BpBinder与PPBinder调用过程的使用和注意事项。通过使用BpBinder和PPBinder,我们可以实现跨进程通信,并且可以方便地调用服务端的方法。在使用过程中,需要注意注册Binder对象、传递参数、处理异常等细节。Binder IPC通信技术是Android系统中非常重要的进程间通信技术,对于实现跨进程通信和提高系统性能具有重要意义。
相关文章:

BpBinder与PPBinder调用过程——Android开发Binder IPC通信技术
在Android系统中,进程间通信(IPC)是一个非常重要的话题。Android系统通过Binder IPC机制实现进程间通信,而Binder IPC通信技术则是Android系统中最为重要的进程间通信技术之一。本文将介绍Binder IPC通信技术的原理,并…...
篇十五:模板方法模式:固定算法的步骤
篇十五:"模板方法模式:固定算法的步骤" 设计模式是软件开发中的重要知识,模板方法模式(Template Method Pattern)是一种行为型设计模式,用于定义一个算法的骨架,将算法中一些步骤的具…...

web-ssrf
目录 ssrf介绍 以pikachu靶场为例 curl 访问外网链接 利用file协议查看本地文件 利用dict协议扫描内网主机开放端口 file_get_content 利用file协议查看本地文件: fsockopen() 防御方式: ssrf介绍 服务器端请求伪造,是一种由攻击者构造形成…...
【HarmonyOS】【续集】实现从视频提取音频并保存到pcm文件功能(API6 Java)
【关键字】 视频提取类Extractor、视频编解码、保存pcm文件、getAudioTime 【背景和问题】 上篇中介绍了从视频提取音频并保存到pcm文件功能,请参考文档:https://developer.huawei.com/consumer/cn/forum/topic/0209125665541017202?fid0101591351254…...
MySQL为什么要使用 B+Tree 作为索引结构?
MySQL为什么要使用 BTree 作为索引结构? 基本情况 常规的数据库存储引擎 ,一般都是采用 B 树或者 B树来实现索引的存储。B树是一种多路平衡树,用这种存储结构来存储大量数据,它的整个高度 会相比二叉树来说 ,会矮很多…...

Three.js阴影
目录 Three.js入门 Three.js光源 Three.js阴影 使用灯光后,场景中就会产生阴影。物体的背面确实在黑暗中,这称为核心阴影(core shadow)。我们缺少的是落下的阴影(drop shadow),即对象在其他…...

VSCode Remote-SSH (Windows)
1. VSCode 安装 VSCode 2. 安装扩展 Remote SSH Getting started Follow the step-by-step tutorial or if you have a simple SSH host setup, connect to it as follows: Press F1 and run the Remote-SSH: Open SSH Host… command.Enter your user and host/IP in the …...

现代C++中的从头开始深度学习【1/8】:基础知识
一、说明 提及机器学习框架与研究和工业的相关性。现在很少有项目不使用Google TensorFlow或Meta PyTorch,在于它们的可扩展性和灵活性。也就是说,花时间从头开始编码机器学习算法似乎违反直觉,即没有任何基本框架。然而,事实并非…...

Jwt(Json web token)——使用token的权限验证方法 用户+角色+权限表设计 SpringBoot项目应用
目录 引出使用token的权限验证方法流程 用户、角色、权限表设计权限表角色表角色-权限关联表用户表查询用户的权限(四表联查)数据库的视图 项目中的应用自定义注解拦截器controller层DTO返回给前端枚举类型的json化日期json问题 实体类-DAO 总结 引出 1.…...

SpringWeb项目核心功能总结
SpringWeb项目核心功能总结 文章目录 SpringWeb项目核心功能总结1.浏览器与Java程序的连接(个人偏好使用RequestMapping)2.参数的传入3.结果的返回请求转发和请求重定向的区别 核心功能用到的注解: RestControllerControllerResponseBodyRequ…...
Django------信号
Django 框架包含了一个信号机制,它允许若干个发送者(sender)通知一组接收者(receiver)某些特定操作或事件(events)已经发生了, 接收者收到指令信号(signals)后再去执行特定的操作。本文主要讲解Django信号(…...

HTML5 中新增了哪些表单元素?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ HTML5 中新增了的表单元素⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅!这个专栏是为那些对Web开发感兴趣、刚…...

[考研机试] KY20 完数VS盈数 清华大学复试上机题 C++实现
描述 一个数如果恰好等于它的各因子(该数本身除外)子和,如:6321。则称其为“完数”;若因子之和大于该数,则称其为“盈数”。 求出2到60之间所有“完数”和“盈数”。 输入描述: 题目没有任何输入。 输出描述&#…...

re学习(30)攻防世界-hackme(代码复原2)
思路: 1.输出成功,v26不为0,说明关系式:v21((unsigned __int8)v24 ^ v20) →2.在汇编代码第37行,输入v16v20,所以求的值为v20 →3.根据关系式,求的值v20v21^v24 →4.v21在第汇编代码第36行也可以提取出来…...

Go Windows下开发环境配置(图文)
Go Windows下开发环境配置 下载 安装 点击下载的安装包进行安装。安装路径可以选择到自己的目录。 环境变量配置 GOROOT:(指定到安装目录下) GOPATH:(是工作空间) path:在安装时已经添加了…...
【人工智能概述】python妙用 __str__()
【人工智能概述】python妙用 str() 文章目录 【人工智能概述】python妙用 __str__()一.python内置函数__str__() 一.python内置函数__str__() 通过自定义__str__()函数可以打印对象中相关的内容。 class Person(object):def __init__(self, name tom, age 10):self.name n…...
android kernel移植5-RK3568
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言1.添加开发板默认配置文件2.添加开发板默认设备树2.1复制设备树2.2指定设备树前言 前面我们已经学会了移植uboot,其实就是把瑞芯微的关于uboot的一些文件的名字和编译指定的文件改为自己定义…...
C++——string类介绍
我们知道在C语言里,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数, 但是这些库函数与字符串是分离开的,而且底层空间需要用户自己管理,可 能还会越界访问。 但是在C…...

教雅川学缠论07-中枢实战众泰汽车000980
本文实战众泰汽车 下面是2023年11月14-2023年8月8众泰汽车日K图 先画日K 接下来处理包含,就变成下面这个样子 下面在套上缠论的理论,未来股价的走势应该是红色椭圆形虚线里面的样子 好了,文章就到这里,如果众泰最终不是这个走势…...

REDIS主从配置
目录 前言 一、概述 二、作用 三、缺点 四、redis主从复制的流程 五、搭建redis主从复制 总结 前言 Redis的主从配置是指在Redis集群中,将一个Redis节点配置为主节点(master),其他节点配置为从节点(slave)…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
Netty自定义协议解析
目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...