[PyTorch][chapter 48][LSTM -3]
简介:
主要介绍一下
sin(x): 为 数据
cos(x): 为对应的label
项目包括两个文件
main.py:
模型的训练,验证,参数保存
lstm.py
模型的构建
目录:
- lstm.py
- main.py
一 lstm.py
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 8 14:01:15 2023@author: chengxf2
"""import torch
import torch.nn as nnclass LSTM(nn.Module):def __init__(self, input_dim, hidden_dim, num_lay, b_first):super(LSTM,self).__init__()self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim, num_layers = num_lay, batch_first=b_first)self.linear = nn.Linear(hidden_dim, 1)def forward(self, X):#X.shape:[batch_size=1, seq_num=256, input_size=1]output, (hidden, cell) = self.lstm(X)outs =[]seq_num = output.size(1)#output:[batch_size, seq_num, hidden_dim=64]#hidden.shape:[num_layer, batch_size, hiden_size]#print("\n output.shape",output.shape)#print("\n hidden.shape",hidden.shape)for time_step in range(seq_num):#h.shape[batch, hidden_dim]h = output[:,time_step,:]#print("\n h",h.shape)out = self.linear(h)outs.append(out)#沿着一个新维度对输入张量序列进行连接。 #[batch, seq_num, 1]pred = torch.stack(outs, dim=1)return pred
二 main.py
import numpy as np
from matplotlib import pyplot as plt
import torch
from lstm import LSTM
import torch.nn as nn
from torch.nn import functional as F
from torch import optim
import timedef showDiff(pred, label, steps):plt.figure()plt.rcParams['font.family'] = 'SimHei' # 正常显示中文plt.title('预测值 and 真实值', fontsize='18')plt.plot(steps, pred.cpu().data.numpy().flatten(),color='r',label='预测值')plt.plot(steps, label.cpu().data.numpy().flatten(), color='g',label='真实值')plt.legend(loc='best')plt.show()def get_data(epoch):TIME_STEP = 256start, end = epoch*np.pi, epoch*np.pi+2*np.pisteps = np.linspace(start,end,TIME_STEP,dtype=np.float32)sin_x = np.sin(steps)cos_x = np.cos(steps)sinx_torch = torch.from_numpy(sin_x[np.newaxis, :, np.newaxis])if torch.cuda.is_available():sinx_torch = torch.from_numpy(sin_x[np.newaxis,:,np.newaxis]).cuda()# print('sinx_input.shape:',sinx_input.shape)cosx_lable = torch.from_numpy(cos_x[np.newaxis, :, np.newaxis]).cuda()else:sinx_torch = torch.from_numpy(sin_x[np.newaxis, :, np.newaxis])# print('sinx_input.shape:',sinx_input.shape)cosx_lable = torch.from_numpy(cos_x[np.newaxis, :, np.newaxis])# [batch,seq_num,input_size] (1,256,1)return sinx_torch,cosx_lable,stepsdef eval(model):#等同于 self.train(False) 就是评估模式。#在评估模式下,batchNorm层,dropout层等用于优化训练而添加的网络层会被关闭,从而使得评估时不会发生偏移model.eval()test_data,test_label,steps = get_data(2)with torch.no_grad():y_pred = model(test_data)showDiff(y_pred, test_label, steps)def train(model,maxIter,criterion):'''训练模型----------model : lstm 模型.maxIter : 迭代次数.criterion : 损失函数------'''#作用是启用 batch normalization 和 dropoutmodel.train()time_stamp = time.time()for epoch in range(maxIter):sinx_torch,cosx_lable,steps = get_data(epoch)y_pre = model(sinx_torch) loss = criterion(y_pre,cosx_lable)optimzer.zero_grad()loss.backward()optimzer.step()if epoch%100==0:data_time_interval = time.time() - time_stampprint('epoch: %d loss: %7.3f interval: %6.2f'%(epoch, loss.detach().numpy(),data_time_interval))#torch.save(model.state_dict(), 'model_params.pth') showDiff(y_pre, cosx_lable,steps)if __name__ == '__main__':input_dim =1hidden_dim = 64num_layers =2batch_first = TruemaxIter = 3000model = LSTM(input_dim, hidden_dim, num_layers, batch_first)DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")optimzer = optim.Adam(model.parameters(),lr=0.0001,weight_decay=0.00001)criterion = nn.MSELoss()model.to(DEVICE)criterion.to(DEVICE)train(model,maxIter,criterion)#model.load_state_dict(torch.load('model_params.pth',map_location='cpu'))#eval(model)
参考:
pytorch利用rnn通过sin预测cos 利用lstm预测手写数字_pytorch lstm cos_薛定谔的智能的博客-CSDN博客
相关文章:
[PyTorch][chapter 48][LSTM -3]
简介: 主要介绍一下 sin(x): 为 数据 cos(x): 为对应的label 项目包括两个文件 main.py: 模型的训练,验证,参数保存 lstm.py 模型的构建 目录: lstm.py main.py 一 lstm.py # -*- coding: utf-8 -*- "&q…...
xss csrf 攻击
介绍 xss csrf 攻击 XSS: XSS 是指跨站脚本攻击。攻击者利用站点的漏洞,在表单提交时,在表单内容中加入一些恶意脚本,当其他正常用户浏览页面,而页面中刚好出现攻击者的恶意脚本时,脚本被执行,从…...
如何使用win10专业版系统自带远程桌面公司内网电脑,从而实现居家办公?
使用win10专业版自带远程桌面公司内网电脑 文章目录 使用win10专业版自带远程桌面公司内网电脑 在现代社会中,各类电子硬件已经遍布我们身边,除了应用在个人娱乐场景的消费类电子产品外,各项工作也离不开电脑的帮助,特别是涉及到数…...
leetcode做题笔记62
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 思路一…...
图论 <最短路问题>模板
图论 <最短路问题> 有向图 1.邻接矩阵,稠密图 2.邻接表 (常用)单链表,每一个点都有一个单链表 ,插入一般在头的地方插, 图的邻接表的存储方式 树的深度优先遍历 特殊的深度优先搜索,…...
计算机网络性能指标
比特:数据量的单位 KB 2^10B 2^13 bit 比特率:连接在计算机网络上的主机在数字通道上传送比特的速率 kb/s 10^3b/s 带宽:信号所包含的各种频率不同的成分所占据的频率范围 Hz 表示在网络中的通信线路所能传送数据的能力(…...
vue + elementUI 实现下拉树形结构选择部门,支持多选,支持检索
vue elementUI 实现下拉树形结构选择部门,支持多选,支持检索 <template><div><el-select v-model"multiple?choosedValue:choosedValue[0]" element-loading-background"rgba(0,0,0,0.8)":disabled"disableFl…...
招投标系统简介 企业电子招投标采购系统源码之电子招投标系统 —降低企业采购成本 tbms
功能模块: 待办消息,招标公告,中标公告,信息发布 描述: 全过程数字化采购管理,打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力,为外…...
半监督学习(主要伪标签方法)
半监督学习 1. 引言 应用场景:存在少量的有标签样本和大量的无标签样本的场景。在此应用场景下,通常标注数据是匮乏的,成本高的,难以获取的,与之相对应的是却存在大量的无标注数据。半监督学习的假设:决策…...
datePicker一个或多个日期组件,如何快捷选择多个日期(时间段)
elementUI的组件文档中没有详细说明type"dates"如何快捷选择一个时间段的日期,我们可以通过picker-options参数来设置快捷选择: <div class"block"><span class"demonstration">多个日期</span><el…...
【语音合成】微软 edge-tts
目录 1. edge-tts 介绍 2. 代码示例 1. edge-tts 介绍 https://github.com/rany2/edge-tts 在Python代码中使用Microsoft Edge的在线文本到语音服务 2. 代码示例 import asyncio # pip install edge_tts import edge_tts TEXT """给我放首我喜欢听的歌曲…...
elevation mapping学习笔记3之使用D435i相机离线或在线订阅点云和tf关系生成高程图
文章目录 0 引言1 数据1.1 D435i相机配置1.2 协方差位姿1.3 tf 关系2 离线demo2.1 yaml配置文件2.2 launch启动文件2.3 数据录制2.4 离线加载点云生成高程图3 在线demo3.1 launch启动文件3.2 CMakeLists.txt3.3 在线加载点云生成高程图0 引言 elevation mapping学习笔记1已经成…...
ESP32 Max30102 (3)修复心率误差
1. 运行效果 2. 新建修复心率误差.py 代码如下: from machine import sleep, SoftI2C, Pin, Timer from utime import ticks_diff, ticks_us from max30102 import MAX30102, MAX30105_PULSE_AMP_MEDIUM from hrcalc import calc_hr_and_spo2BEATS = 0 # 存储心率 FINGER_F…...
16-4_Qt 5.9 C++开发指南_Qt 应用程序的发布
文章目录 1. 应用程序发布方式2. Windows 平台上的应用程序发布 1. 应用程序发布方式 用 Qt 开发一个应用程序后,将应用程序提供给用户在其他计算机上使用就是应用程序的发布。应用程序发布一般会提供一个安装程序,将应用程序的可执行文件及需要的运行库…...
oracle容灾备份怎么样Oracle容灾备份
随着科学技术的发展和业务的增长,数据安全问题越来越突出。为了保证数据的完整性、易用性和保密性,公司需要采取一系列措施来防止内容丢失的风险。 Oracle是一个关系数据库管理系统(RDBMS),OracleCorporation是由美国软件公司开发和维护的。该系统功能…...
AcWing 4957:飞机降落
【题目来源】https://www.acwing.com/problem/content/4960/【题目描述】 有 N 架飞机准备降落到某个只有一条跑道的机场。 其中第 i 架飞机在 Ti 时刻到达机场上空,到达时它的剩余油料还可以继续盘旋 Di 个单位时间,即它最早可以于 Ti 时刻开始降落&…...
强化学习研究 PG
由于一些原因, 需要学习一下强化学习。用这篇博客来学习吧, 用的资料是李宏毅老师的强化学习课程。 深度强化学习(DRL)-李宏毅1-8课(全)_哔哩哔哩_bilibili 这篇文章的目的是看懂公式, 毕竟这是我的弱中弱。 强化…...
uniapp微信小程序 401时重复弹出登录弹框问题
APP.vue 登陆成功后,保存登陆信息 if (res.code 200) {uni.setStorageSync(loginResult, res)uni.setStorageSync(token, res.token);uni.setStorageSync(login,false);uni.navigateTo({url: "/pages/learning/learning"}) }退出登录 toLogout: func…...
Cloud Studio实战——热门视频Top100爬虫应用开发
最近Cloud Studio非常火,我也去试了一下,感觉真的非常方便!我就以Python爬取B站各区排名前一百的视频,并作可视化来给大家分享一下Cloud Studio!应用链接:Cloud Studio实战——B站热门视频Top100爬虫应用开…...
php 去除二维数组重复
在 PHP 中,我们常常需要对数组进行处理和操作。有时候,我们需要去除数组中的重复元素,这里介绍一种针对二维数组的去重方法。 以下是列举一些常见的方法: 方法一:使用 array_map 和 serialize 函数 array_map 函数可以…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
