当前位置: 首页 > news >正文

[PyTorch][chapter 48][LSTM -3]

简介:

     主要介绍一下  

      sin(x):  为 数据

      cos(x):   为对应的label

      项目包括两个文件

      main.py:

              模型的训练,验证,参数保存

     lstm.py

              模型的构建

目录:

  1.      lstm.py
  2.      main.py

一 lstm.py

   

# -*- coding: utf-8 -*-
"""
Created on Tue Aug  8 14:01:15 2023@author: chengxf2
"""import torch
import torch.nn as nnclass LSTM(nn.Module):def __init__(self, input_dim, hidden_dim, num_lay, b_first):super(LSTM,self).__init__()self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim, num_layers = num_lay, batch_first=b_first)self.linear = nn.Linear(hidden_dim, 1)def forward(self, X):#X.shape:[batch_size=1, seq_num=256, input_size=1]output, (hidden, cell) = self.lstm(X)outs =[]seq_num = output.size(1)#output:[batch_size, seq_num, hidden_dim=64]#hidden.shape:[num_layer, batch_size, hiden_size]#print("\n output.shape",output.shape)#print("\n hidden.shape",hidden.shape)for time_step in range(seq_num):#h.shape[batch, hidden_dim]h = output[:,time_step,:]#print("\n h",h.shape)out = self.linear(h)outs.append(out)#沿着一个新维度对输入张量序列进行连接。 #[batch, seq_num, 1]pred = torch.stack(outs, dim=1)return pred

二  main.py

import numpy as np
from matplotlib import pyplot as plt
import torch
from lstm import LSTM
import torch.nn as nn
from torch.nn import functional as F
from torch import optim
import timedef showDiff(pred, label, steps):plt.figure()plt.rcParams['font.family'] = 'SimHei' # 正常显示中文plt.title('预测值 and 真实值', fontsize='18')plt.plot(steps, pred.cpu().data.numpy().flatten(),color='r',label='预测值')plt.plot(steps, label.cpu().data.numpy().flatten(), color='g',label='真实值')plt.legend(loc='best')plt.show()def get_data(epoch):TIME_STEP = 256start, end = epoch*np.pi, epoch*np.pi+2*np.pisteps = np.linspace(start,end,TIME_STEP,dtype=np.float32)sin_x = np.sin(steps)cos_x = np.cos(steps)sinx_torch = torch.from_numpy(sin_x[np.newaxis, :, np.newaxis])if torch.cuda.is_available():sinx_torch = torch.from_numpy(sin_x[np.newaxis,:,np.newaxis]).cuda()# print('sinx_input.shape:',sinx_input.shape)cosx_lable = torch.from_numpy(cos_x[np.newaxis, :, np.newaxis]).cuda()else:sinx_torch = torch.from_numpy(sin_x[np.newaxis, :, np.newaxis])# print('sinx_input.shape:',sinx_input.shape)cosx_lable = torch.from_numpy(cos_x[np.newaxis, :, np.newaxis])# [batch,seq_num,input_size] (1,256,1)return sinx_torch,cosx_lable,stepsdef eval(model):#等同于 self.train(False) 就是评估模式。#在评估模式下,batchNorm层,dropout层等用于优化训练而添加的网络层会被关闭,从而使得评估时不会发生偏移model.eval()test_data,test_label,steps = get_data(2)with torch.no_grad():y_pred = model(test_data)showDiff(y_pred, test_label, steps)def train(model,maxIter,criterion):'''训练模型----------model : lstm 模型.maxIter : 迭代次数.criterion : 损失函数------'''#作用是启用 batch normalization 和 dropoutmodel.train()time_stamp = time.time()for epoch in range(maxIter):sinx_torch,cosx_lable,steps = get_data(epoch)y_pre = model(sinx_torch)   loss = criterion(y_pre,cosx_lable)optimzer.zero_grad()loss.backward()optimzer.step()if epoch%100==0:data_time_interval = time.time() - time_stampprint('epoch: %d loss: %7.3f interval: %6.2f'%(epoch, loss.detach().numpy(),data_time_interval))#torch.save(model.state_dict(), 'model_params.pth') showDiff(y_pre, cosx_lable,steps)if __name__ == '__main__':input_dim =1hidden_dim = 64num_layers =2batch_first = TruemaxIter = 3000model = LSTM(input_dim, hidden_dim, num_layers, batch_first)DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")optimzer = optim.Adam(model.parameters(),lr=0.0001,weight_decay=0.00001)criterion = nn.MSELoss()model.to(DEVICE)criterion.to(DEVICE)train(model,maxIter,criterion)#model.load_state_dict(torch.load('model_params.pth',map_location='cpu'))#eval(model)

 

参考:

pytorch利用rnn通过sin预测cos 利用lstm预测手写数字_pytorch lstm cos_薛定谔的智能的博客-CSDN博客

相关文章:

[PyTorch][chapter 48][LSTM -3]

简介: 主要介绍一下 sin(x): 为 数据 cos(x): 为对应的label 项目包括两个文件 main.py: 模型的训练,验证,参数保存 lstm.py 模型的构建 目录: lstm.py main.py 一 lstm.py # -*- coding: utf-8 -*- "&q…...

xss csrf 攻击

介绍 xss csrf 攻击 XSS: XSS 是指跨站脚本攻击。攻击者利用站点的漏洞,在表单提交时,在表单内容中加入一些恶意脚本,当其他正常用户浏览页面,而页面中刚好出现攻击者的恶意脚本时,脚本被执行,从…...

如何使用win10专业版系统自带远程桌面公司内网电脑,从而实现居家办公?

使用win10专业版自带远程桌面公司内网电脑 文章目录 使用win10专业版自带远程桌面公司内网电脑 在现代社会中,各类电子硬件已经遍布我们身边,除了应用在个人娱乐场景的消费类电子产品外,各项工作也离不开电脑的帮助,特别是涉及到数…...

leetcode做题笔记62

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 思路一…...

图论 <最短路问题>模板

图论 <最短路问题> 有向图 1.邻接矩阵&#xff0c;稠密图 2.邻接表 &#xff08;常用&#xff09;单链表&#xff0c;每一个点都有一个单链表 &#xff0c;插入一般在头的地方插&#xff0c; 图的邻接表的存储方式 树的深度优先遍历 特殊的深度优先搜索&#xff0c…...

计算机网络性能指标

比特&#xff1a;数据量的单位 KB 2^10B 2^13 bit 比特率&#xff1a;连接在计算机网络上的主机在数字通道上传送比特的速率 kb/s 10^3b/s 带宽&#xff1a;信号所包含的各种频率不同的成分所占据的频率范围 Hz 表示在网络中的通信线路所能传送数据的能力&#xff08…...

vue + elementUI 实现下拉树形结构选择部门,支持多选,支持检索

vue elementUI 实现下拉树形结构选择部门&#xff0c;支持多选&#xff0c;支持检索 <template><div><el-select v-model"multiple?choosedValue:choosedValue[0]" element-loading-background"rgba(0,0,0,0.8)":disabled"disableFl…...

招投标系统简介 企业电子招投标采购系统源码之电子招投标系统 —降低企业采购成本 tbms

​功能模块&#xff1a; 待办消息&#xff0c;招标公告&#xff0c;中标公告&#xff0c;信息发布 描述&#xff1a; 全过程数字化采购管理&#xff0c;打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力&#xff0c;为外…...

半监督学习(主要伪标签方法)

半监督学习 1. 引言 应用场景&#xff1a;存在少量的有标签样本和大量的无标签样本的场景。在此应用场景下&#xff0c;通常标注数据是匮乏的&#xff0c;成本高的&#xff0c;难以获取的&#xff0c;与之相对应的是却存在大量的无标注数据。半监督学习的假设&#xff1a;决策…...

datePicker一个或多个日期组件,如何快捷选择多个日期(时间段)

elementUI的组件文档中没有详细说明type"dates"如何快捷选择一个时间段的日期&#xff0c;我们可以通过picker-options参数来设置快捷选择&#xff1a; <div class"block"><span class"demonstration">多个日期</span><el…...

【语音合成】微软 edge-tts

目录 1. edge-tts 介绍 2. 代码示例 1. edge-tts 介绍 https://github.com/rany2/edge-tts 在Python代码中使用Microsoft Edge的在线文本到语音服务 2. 代码示例 import asyncio # pip install edge_tts import edge_tts TEXT """给我放首我喜欢听的歌曲…...

elevation mapping学习笔记3之使用D435i相机离线或在线订阅点云和tf关系生成高程图

文章目录 0 引言1 数据1.1 D435i相机配置1.2 协方差位姿1.3 tf 关系2 离线demo2.1 yaml配置文件2.2 launch启动文件2.3 数据录制2.4 离线加载点云生成高程图3 在线demo3.1 launch启动文件3.2 CMakeLists.txt3.3 在线加载点云生成高程图0 引言 elevation mapping学习笔记1已经成…...

ESP32 Max30102 (3)修复心率误差

1. 运行效果 2. 新建修复心率误差.py 代码如下: from machine import sleep, SoftI2C, Pin, Timer from utime import ticks_diff, ticks_us from max30102 import MAX30102, MAX30105_PULSE_AMP_MEDIUM from hrcalc import calc_hr_and_spo2BEATS = 0 # 存储心率 FINGER_F…...

16-4_Qt 5.9 C++开发指南_Qt 应用程序的发布

文章目录 1. 应用程序发布方式2. Windows 平台上的应用程序发布 1. 应用程序发布方式 用 Qt 开发一个应用程序后&#xff0c;将应用程序提供给用户在其他计算机上使用就是应用程序的发布。应用程序发布一般会提供一个安装程序&#xff0c;将应用程序的可执行文件及需要的运行库…...

oracle容灾备份怎么样Oracle容灾备份

随着科学技术的发展和业务的增长&#xff0c;数据安全问题越来越突出。为了保证数据的完整性、易用性和保密性&#xff0c;公司需要采取一系列措施来防止内容丢失的风险。  Oracle是一个关系数据库管理系统(RDBMS),OracleCorporation是由美国软件公司开发和维护的。该系统功能…...

AcWing 4957:飞机降落

【题目来源】https://www.acwing.com/problem/content/4960/【题目描述】 有 N 架飞机准备降落到某个只有一条跑道的机场。 其中第 i 架飞机在 Ti 时刻到达机场上空&#xff0c;到达时它的剩余油料还可以继续盘旋 Di 个单位时间&#xff0c;即它最早可以于 Ti 时刻开始降落&…...

强化学习研究 PG

由于一些原因&#xff0c; 需要学习一下强化学习。用这篇博客来学习吧&#xff0c; 用的资料是李宏毅老师的强化学习课程。 深度强化学习(DRL)-李宏毅1-8课&#xff08;全&#xff09;_哔哩哔哩_bilibili 这篇文章的目的是看懂公式&#xff0c; 毕竟这是我的弱中弱。 强化…...

uniapp微信小程序 401时重复弹出登录弹框问题

APP.vue 登陆成功后&#xff0c;保存登陆信息 if (res.code 200) {uni.setStorageSync(loginResult, res)uni.setStorageSync(token, res.token);uni.setStorageSync(login,false);uni.navigateTo({url: "/pages/learning/learning"}) }退出登录 toLogout: func…...

Cloud Studio实战——热门视频Top100爬虫应用开发

最近Cloud Studio非常火&#xff0c;我也去试了一下&#xff0c;感觉真的非常方便&#xff01;我就以Python爬取B站各区排名前一百的视频&#xff0c;并作可视化来给大家分享一下Cloud Studio&#xff01;应用链接&#xff1a;Cloud Studio实战——B站热门视频Top100爬虫应用开…...

php 去除二维数组重复

在 PHP 中&#xff0c;我们常常需要对数组进行处理和操作。有时候&#xff0c;我们需要去除数组中的重复元素&#xff0c;这里介绍一种针对二维数组的去重方法。 以下是列举一些常见的方法&#xff1a; 方法一&#xff1a;使用 array_map 和 serialize 函数 array_map 函数可以…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...

Python的__call__ 方法

在 Python 中&#xff0c;__call__ 是一个特殊的魔术方法&#xff08;magic method&#xff09;&#xff0c;它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时&#xff08;例如 obj()&#xff09;&#xff0c;Python 会自动调用该对象的 __call__ 方法…...

【题解-洛谷】P10480 可达性统计

题目&#xff1a;P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图&#xff0c;分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M&#xff0c;接下来 M M M 行每行两个整数 x , y x,y x,y&#xff0c;表示从 …...

基于Python的气象数据分析及可视化研究

目录 一.&#x1f981;前言二.&#x1f981;开源代码与组件使用情况说明三.&#x1f981;核心功能1. ✅算法设计2. ✅PyEcharts库3. ✅Flask框架4. ✅爬虫5. ✅部署项目 四.&#x1f981;演示效果1. 管理员模块1.1 用户管理 2. 用户模块2.1 登录系统2.2 查看实时数据2.3 查看天…...

Spring事务传播机制有哪些?

导语&#xff1a; Spring事务传播机制是后端面试中的必考知识点&#xff0c;特别容易出现在“项目细节挖掘”阶段。面试官通过它来判断你是否真正理解事务控制的本质与异常传播机制。本文将从实战与源码角度出发&#xff0c;全面剖析Spring事务传播机制&#xff0c;帮助你答得有…...

宠物车载安全座椅市场报告:解读行业趋势与投资前景

一、什么是宠物车载安全座椅&#xff1f; 宠物车载安全座椅是一种专为宠物设计的车内固定装置&#xff0c;旨在保障宠物在乘车过程中的安全性与舒适性。它通常由高强度材料制成&#xff0c;具备良好的缓冲性能&#xff0c;并可通过安全带或ISOFIX接口固定于车内。 近年来&…...