当前位置: 首页 > news >正文

Mindspore安装

本文用于记录搭建昇思MindSpore开发及使用环境的过程,并通过MindSpore的API快速实现了一个简单的深度学习模型。

什么是MindSpore?

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景覆盖三大目标。

安装步骤

鉴于笔者手头硬件资源有限,这里采用的环境是CPU。如下是在CPU环境的Windows系统上,使用pip方式快速安装MindSpore的步骤:

  1. 确认系统环境信息
  • 确认安装Windows 10是x86架构64位操作系统。
  • 确认安装Python(>=3.7.5),已有Python环境是Python3.9.7版本,满足要求。
  1. 安装MindSpore

运行以下命令:

# Python3.9
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

在联网状态下,安装whl包时会自动下载mindspore安装包的依赖项。

安装报错

ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: 'D:\\Program Files\\Anaconda\\Lib\\site-packages\\~-mpy\\.libs\\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll' Consider using the `--user` option or check the permissions.

在这里插入图片描述

这是因为pip安装模块的权限不够导致失败,笔者是通过执行下面的命令得以解决。

pip install -i http://pypi.douban.com/simple/  pip -U --trusted-host pypi.douban.com --user

执行完上述命令之后再次安装mindspore,如下图。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sRliKJ4o-1676715767200)(imgs/230217155424.png)]

在这里插入图片描述

  1. 验证安装是否成功
python -c "import mindspore;mindspore.run_check()"

输出如下内容,表明安装成功。

在这里插入图片描述

快速入门

这里以手写体数字识别为例,体验了基于MindSpore的API实现深度学习模型的过程。

场景描述

本文使用Mindspore,基于Resnet50神经网络完成手写体数字识别。

数据集处理

下载Mnist数据集

Mnist数据集是机器学习领域的一款经典数据集,其中包括6w个训练样本和1w个测试样本,每个样本都是28*28像素的灰度手写数字图片,数字0-9共10类。通过如下代码下载:

# Download data from open datasets
from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

在这里插入图片描述

获取数据集对象

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names()) #['image', 'label']

数据集目录如下,其中标记为images的是图片,labels是标签。

在这里插入图片描述

数据处理

数据集自动下载完成后,可使用数据处理模块 mindspore.dataset 进行预处理。这里采用的是流水线处理,在海量数据下,该处理模式可以实现数据的高效处理,当然也会占用更多的CPU和内存资源。

  1. 使用map对图像数据及标签进行变换处理,并将处理完的数据集打包,batchsize为64。map函数会将数据集中第二个参数的指定的列作为输入,调用第一个参数的处理函数执行处理,如果有多个处理函数,上一个函数的输出作为下一个函数的输入。其中,map的第一个参数是处理函数列表,第二个参数表示需要处理的列。
def data_process(dataset, batch_size):image_transforms = [#图像缩放,输出像素值output = image * rescale + shift.vision.Rescale(1.0 / 255.0, 0),#根据平均值和标准偏差对输入图像进行归一化,其中,mean是图像各个通道的均值,std是各个通道的标准差vision.Normalize(mean=(0.1307,), std=(0.3081,)),#转换图像格式,在不同的硬件设备中可能会对(height, width, channel)# 或(channel, height, width)两种不同格式有针对性优化。MindSpore设# 置HWC为默认图像格式,在有CWH格式需求时,可使用该变换进行处理。vision.HWC2CHW()]# 转为mindspore的int32格式label_transform = transforms.TypeCast(mindspore.int32)# 对各个图像按照流水线处理dataset = dataset.map(image_transforms, 'image')# 将各个标签转为int32类型dataset = dataset.map(label_transform, 'label')dataset = dataset.batch(batch_size)return datasettrain_dataset = data_process(train_dataset, 64)
test_dataset = data_process(test_dataset, 64)
  1. 使用create_tuple_iterator或create_dict_iterator对数据集进行迭代。
# image, label = next(train_dataset.create_tuple_iterator())for image, label in test_dataset.create_tuple_iterator():print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")print(f"Shape of label: {label.shape} {label.dtype}")breakfor data in test_dataset.create_dict_iterator():print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")break

网络构建

基于mindspore的nn.Cell类,构建Resnet50神经网络。

神经网络模型由神经网络层和Tensor操作构成,基于 mindspore.nn 可实现常见的神经网络层,其中 nn.Cell 类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型可表示为一个Cell,它又是由
不同的子Cell组成。基于这样的嵌套结构,即可简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

定义模型类

定义神经网络模型继承nn.Cell类,再在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logits

构建完成后,实例化Network对象,并查看结构。

model = Network()
print(model)

在这里插入图片描述

模型层分解

构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像)。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape) #(3, 28, 28)
  • nn.Flatten

    实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

    flatten = nn.Flatten()
    flat_image = flatten(input_image)
    print(flat_image.shape) # (3, 784)
    
  • nn.Dense

    nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

    layer1 = nn.Dense(in_channels=28*28, out_channels=20)
    hidden1 = layer1(flat_image)
    print(hidden1.shape) #(3, 20)
    
  • nn.ReLU

    nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

    print(f"Before ReLU: {hidden1}\n\n")
    hidden1 = nn.ReLU()(hidden1)
    print(f"After ReLU: {hidden1}")
    

在这里插入图片描述

  • nn.SequentialCell

    nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

    seq_modules = nn.SequentialCell(flatten,layer1,nn.ReLU(),nn.Dense(20, 10)
    )logits = seq_modules(input_image)
    print(logits.shape) #(3,10)
    
  • nn.Softmax

    最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

    softmax = nn.Softmax(axis=1)
    pred_probab = softmax(logits)
    

    输出如下:

    [[0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]
    [0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]
    [0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]]
    

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")for name, param in model.parameters_and_names():print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

在这里插入图片描述

模型训练

#定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

通常,一个完成的模型训练过程包括如下三步:

  1. 正向计算:模型对结果预测,输出logits值,并与正确标签label求预测损失loss。
  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  3. 参数优化:将梯度更新到参数上。
# 定义正向计算函数
def forward_fn(data, label):logits = model(data)loss = loss_fn(logits, label)return loss, logits#通过mindspore中的函数变换获取梯度计算函数
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)# 定义训练函数
def train_step(data, label):(loss, _), grads = grad_fn(data, label)optimizer(grads)return lossdef train(model, dataset):size = dataset.get_dataset_size()model.set_train()for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):loss = train_step(data, label)if batch % 100 == 0:loss, current = loss.asnumpy(), batchprint(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

定义测试函数,评估模型性能。

def test(model, dataset, loss_fn):num_batches = dataset.get_dataset_size()model.set_train(False)total, test_loss, correct = 0, 0, 0for data, label in dataset.create_tuple_iterator():pred = model(data)total += len(data)test_loss += loss_fn(pred, label).asnumpy()correct += (pred.argmax(1) == label).asnumpy().sum()test_loss /= num_batchescorrect /= totalprint(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看出,
loss不断下降,准确度不断提高。

epochs = 3
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(model, train_dataset)test(model, test_dataset, loss_fn)
print("Done!")

在这里插入图片描述

保存模型

模型训练完成后,将参数进行保存。

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

加载模型

加载模型包括两步,具体如下。

# 实例化模型对象,构造模型。
model = Network()
# 加载模型参数,并将其加载至模型上。
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load = mindspore.load_param_into_net(model, param_dict)
#param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。
print(param_not_load)#[]

模型推理

加载后的模型即可直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:pred = model(data)predicted = pred.argmax(1)print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')break

在这里插入图片描述

相关文章:

Mindspore安装

本文用于记录搭建昇思MindSpore开发及使用环境的过程,并通过MindSpore的API快速实现了一个简单的深度学习模型。 什么是MindSpore? 昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景覆盖三大目标。 安装步骤 鉴于笔者手头硬…...

C++010-C++嵌套循环

文章目录C010-C嵌套循环嵌套循环嵌套循环举例题目描述 输出1的个数题目描述 输出n行99乘法表题目描述 求s1!2!...10!作业在线练习:总结C010-C嵌套循环 在线练习: http://noi.openjudge.cn/ https://www.luogu.com.cn/ 嵌套循环 循环可以指挥计算机重复去…...

设计模式之迭代器模式与命令模式详解和应用

目录1 迭代器模式1.1 目标1.2 内容定位1.3 迭代器模式1.4 迭代器模式的应用场景1.5 手写字定义的送代器1.6 迭代器模式在源码中的体现1.7 迭代器模式的优缺点2 命令模式2.1 定义2.2 命令模式的应用场景2.3 命令模式在业务场景中的应用2.4 命令模式在源码中的体现2.5 命令模式的…...

【QA】[Vue/复选框全选] v-model绑定每一项的赋初值问题

发生场景:不只是复选框的状态改变,还有的功能要用到复选框的选中状态,比如:购物车计算总价,合计等等。 引入:复选框 checkbox 在使用时,需要用v-model绑定布尔值,来获取选中状态&…...

python基于django+vue微信小程序的校园二手闲置物品交易

在大学校园里,存在着很多的二手商品,但是由于信息资源的不流通以及传统二手商品信息交流方式的笨拙,导致了很多仍然具有一定价值或者具有非常价值的二手商品的囤积,乃至被当作废弃物处理。现在通过微信小程序的校园二手交易平台,可以方便快捷的发布和交流任何二手商品的信息,并…...

设计模式之观察者模式

什么是观察者模式 观察者模式定义了对象之间一种一对多依赖关系,使得每当一个对象状态发生改变时,其相关依赖对象都能收到通知并自动刷新。     观察者模式主要包含以下几个角色:         Subject(目标):指被观察的对…...

Java Lambda表达式

目录1 Lambda表达式1.1 函数式编程思想概括1.2 Lambda表达式标准格式1.3 Lambda表达式练习1(抽象方法无参无返回值)1.4 Lambda表达式练习2(抽象方法带参无返回值)1.5 Lambda表达式练习2(抽象方法带参带返回值&#xff…...

【1237. 找出给定方程的正整数解】

来源:力扣(LeetCode) 描述: 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子…...

java基础学习 day41(继承中成员变量和成员方法的访问特点,方法的重写)

继承中,成员变量的访问特点 a. name前什么都不加,name变量的访问采用就近原则,先在局部变量中查找,若没找到,继续在本类的成员变量中查找,若没找到,继续在直接父类的成员变量中查找&#xff0c…...

【c语言进阶】深度剖析整形数据

🚀write in front🚀 📜所属专栏: 🛰️博客主页:睿睿的博客主页 🛰️代码仓库:🎉VS2022_C语言仓库 🎡您的点赞、关注、收藏、评论,是对我最大的激励…...

【信息系统项目管理师】项目管理十大知识领域记忆敲出(采购风险沟通干系人)

【信息系统项目管理师】项目管理十大知识领域记忆敲出(采购风险沟通干系人) 这里写目录标题【信息系统项目管理师】项目管理十大知识领域记忆敲出(采购风险沟通干系人)一.项目采购管理记忆敲出1.合同管理:2.规划采购管…...

[LeetCode 1237]找出给定方程的正整数解

题目描述 题目链接:[LeetCode 1237]找出给定方程的正整数解 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知…...

6.2 构建 RESTful 应用接口

第6章 构建 RESTful 服务 6.1 RESTful 简介 6.2 构建 RESTful 应用接口 6.3 使用 Swagger 生成 Web API 文档 6.4 实战:实现 Web API 版本控制 6.2 构建 RESTful 应用接口 6.2.1 Spring Boot 对 RESTful 的支持 Spring Boot 提供的spring-boot-starter-web组件完全…...

20230218英语学习

How Italian Artist’s Mild Colors Dominate World of Design 温柔的“莫兰迪色”,如何引领设计时尚? The Morandi color scheme has become an across-the-board fashion that now prevails in the world of design.Soft and sophisticated Morandi c…...

Linux单一服务管理systemctl

基本上systemd这个启动服务机制只有systemctl命令来处理,所以全部的操作都需要使用systemctl systemctl管理单一服务 一般来说服务的启动有两个阶段,一个是开机是否启动,以及现在是否启动 systemctl【command】【unit】 command主要有&…...

【GStreamer 】 TX1中CPU和GPU解码显示海康相机RTSP流

大家好,我是虎哥,今天找了一套海康的相机,想后续测试一下DeepStream用网络相机RTSP流做输入看看后续目标识别和分类。但是还是想先实时看看视频,当然,可以选择VLC去查看,顺道我也用GStreamer 来测试了一下&…...

匿名内部类、Lambda表达式、方法引用对比分析

文章目录一、匿名内部类1. 语法格式2. 使用方法① 传统方式② 匿名内部类方式二、Lambda表达式1. 语法格式2. 使用方法① 匿名内部类方式② Lambda表达式方式三、方法引用1. 语法格式2. 使用方法① 类型的静态方法引用② 类型的构造方法引用③ 类型的实例方法引用④ 对象的实例…...

ESXi主机CVE-2021-21972漏洞复现安全处置建议

一、漏洞简介 vSphere 是 VMware 推出的虚拟化平台套件,包含 ESXi、vCenter Server 等一系列的软件。其中 vCenter Server 为 ESXi 的控制中心,可从单一控制点统一管理数据中心的所有 vSphere 主机和虚拟机。 vSphere Client(HTML5&#xf…...

研报精选230217

目录 【行业230217毕马威】奢侈品行业新气象【行业230217国信证券】医药生物行业2023年2月投资策略:持续关注疫后复苏和创新两大主线【行业230217国金证券】航空锻造:稳定格局筑专业化壁垒,顺势而为拓产业链深度【个股230217西南证券_招商轮船…...

c++11 标准模板(STL)(std::unordered_set)(一)

定义于头文件 <unordered_set> template< class Key, class Hash std::hash<Key>, class KeyEqual std::equal_to<Key>, class Allocator std::allocator<Key> > class unordered_set;(1)(C11 起)namespace pmr { templ…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...