新版百度、百家号旋转验证码识别
昨天突然发现,百度旋转验证码发生了变化,导致使用老版本验证码训练出来的识别模型效果不佳。所有昨天花了一天时间完成了新版模型的训练。
老版本验证码

新版本验证码

新版的验证码感觉像是AI绘画随机生成的,还有随机阴影出现。
验证码识别过程
1、利用爬虫采集图像
首先我们开发爬虫去采集新版本的图片素材。爬取过程中发现cookie有一定的时效性,没有花过多时间在图片的反爬上做研究。

2、人工标记
为了保障识别的精度,这里需要进行大量的人工标记,旋转角度可能有误差,最好控制在1-2度以内,数据质量决定了模型预测效果

3、训练模型

4、测试验证
我们将训练好的模型用100张图片来进行测试,虽然识别出来角度有所偏差,但是这个误差范围都能够使验证通过,所以正确率接近100%。因为100张测试图片比较少,所以保守估计正确率应该在99%左右。
如果再想提升正确率,可以再增加训练的数据量,就需要再投入大量人力,这个投入与提升产出比需要自己权衡。
5、免费使用地址
我将训练好的模型放在了网上,可以供大家免费学习使用:得塔云
6、总结分析
(1)目前见到的验证码图片可能是AI生成的,所以出现新图片的概率会很大,所以对标注、识别难度会大大增加。
(2)和老版本相比,新版本图像采集加入了一些反爬措施,也增加了一些难度。
(3)目前我没有使用 selenium 进行实战测试,可能会遇到更多反爬措施。
各位大神也请指出我的不足,或者有其他建议都可以给我留言,或私信我,谢谢指点。
相关文章:
新版百度、百家号旋转验证码识别
昨天突然发现,百度旋转验证码发生了变化,导致使用老版本验证码训练出来的识别模型效果不佳。所有昨天花了一天时间完成了新版模型的训练。 老版本验证码 新版本验证码 新版的验证码感觉像是AI绘画随机生成的,还有随机阴影出现。 验证码识别…...
PMP考试每日一练(8月8日)
1、项目经理正在领导一个正在努力协作的多元文化团队。项目经理一开始将此视为团队建设的典型震荡阶段,但团队未能成功通过该阶段。结果,项目开始落后于进度。 项目经理在第一次发现这个问题时应该做哪两项工作?(选两个࿰…...
机器学习实战1-kNN最近邻算法
文章目录 机器学习基础机器学习的关键术语 k-近邻算法(KNN)准备:使用python导入数据实施kNN分类算法示例:使用kNN改进约会网站的配对效果准备数据:从文本文件中解析数据分析数据准备数据:归一化数值测试算法…...
【eNSP】静态路由
【eNSP】静态路由 原理网关路由表 实验根据图片连接模块配置路由器设备R1R2R3R4 配置PC的IP地址、掩码、网关PC1PC2PC3 配置静态路由查看路由表R1R2R3R4测试能否通信 原理 网关 网关与路由器地址相同,一般路由地址为.1或.254。 网关是当电脑发送的数据的目标IP不在…...
算法训练Day42|1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零
背包类别 01背包:有n种物品,每种物品只有一个. 完全背包:有n种物品,每种物品有无限个. 多重背包:有n种物品,每种物品个数各不相同. 区别:仅仅体现在物品个数上的不同而已。 确定dp[i][j]数组的…...
HBase-组成
client 读写请求HMaster 管理元数据监控region是否需要进行负载均衡,故障转移和region的拆分RegionServer 负责数据cell的处理,例如写入数据put,查询数据get等 拆分合并Region的实际执行者,由Master监控,由regionServ…...
第一部分:领域中的基本概念
目录 一、什么是模型 二、什么是领域 三、什么是领域模型 四、什么是领域建模 一、什么是模型 模型是一种简化、它是对现实的解释,它与解决问题密切相关的方面抽象出来,而忽略无关细节。 二、什么是领域 领域是指某一专业或事物方面范围的涵盖。比如…...
react使用ref调用子组件的方法
Class类组件 import React, { useRef } from react;const MyComponent () > {const myComponentRef useRef(null);const handleClick () > {// 调用MyComponent组件的方法myComponentRef.current.myMethod();};return (<div><MyComponent ref{myComponentRe…...
JVM面试突击班2
JVM面试突击班2 对象被判定为不可达对象之后就“死”了吗 对象的生命周期 创建阶段 (1)为对象分配存储空间 (2)开始构造对象 (3)从超类到子类对static成员进行初始化 (4)超类成…...
【80天学习完《深入理解计算机系统》】第二天 2.2 整数的表示【有符号数,无符号数,符号数的扩展,有无符号数的转变】
专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录) 文章字体风格: 红色文字表示&#…...
基于 CentOS 7 构建 LVS-DR 群集以及配置nginx负载均衡
目录 一、基于 CentOS 7 构建 LVS-DR 群集 1、前期准备 1、关闭防火墙 2、安装ifconfig 3、准备四台虚拟机 2、在DS上 2.1、配置LVS虚拟IP 2.2、手工执行配置添加LVS服务并增加两台RS 2.3、查看配置 3、在RS端(第三台、第四台) 上 3.1、配置W…...
golang trace view 视图详解
大家好,我是蓝胖子,在golang中可以使用go pprof的工具对golang程序进行性能分析,其中通过go trace 命令生成的trace view视图对于我们分析系统延迟十分有帮助,鉴于当前对trace view视图的介绍还是很少,在粗略的看过tra…...
zju代码题:4-6
一 分段函数算水费 #include <stdio.h>int main() {/*** 定义两个* 定义浮点型变量* y:水费* x:用水的吨数* */double x, y;printf("Enter x(x>=0):\n"...
数据链路层概述
数据传输过程如下: 数据包按上述过程传输,详见(计算机网络概述三)。在分析数据链路层时可以假象成其沿着水平传播。 这三段链路层的传播方式可能会有所不同。 基本概念: 链路:指一个节点到相邻节点的一段物…...
Python代码使用技巧汇总:提升你的编程技能
各位程序员朋友们,今天我要跟大家分享一些关于Python代码的最佳使用技巧,这些技巧可以帮助你们成为更专业且高效的程序员。不管你是刚刚入门还是已经有一些经验,这些技巧都能够为你提供实际操作价值。 一、合理使用Python的数据结构和算法&am…...
Ae 效果:CC Spotlight
透视/CC Spotlight Perspective/CC Spotlight CC Spotlight(CC 聚光灯) 主要用途是创建和控制逼真的聚光灯效果。通过调整这些属性,可以模拟出各种不同的照明环境和效果,比如舞台照明、日出日落、特定的颜色照明等。 ◆ ◆ ◆ 效…...
如何在页面中嵌入音频和视频?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 嵌入音频⭐ 嵌入视频⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅!这个专栏是为那些对Web开发感兴趣、刚刚踏…...
Unity 中检测射线穿过的所有的物体
在开发中 有个需求,射线要检测所有穿过的物体。 代码如下: using UnityEngine;public class HitCollider : MonoBehaviour {public float raycastDistance Mathf.Infinity;// Update is called once per framevoid Update(){Ray ray Camera.main.Scre…...
LeetCode 29题:两数相除
题目 给你两个整数,被除数 dividend 和除数 divisor。将两数相除,要求 不使用 乘法、除法和取余运算。 整数除法应该向零截断,也就是截去(truncate)其小数部分。例如,8.345 将被截断为 8 ,-2.…...
Axure RP9中使用Echarts示例
目录 在Axure中拖入一个矩形框,并命名tes 进入Echarts官网示例页面https://echarts.apache.org/examples/zh/index.html 选择自己需要的图表,修改数据,并复制左侧js代码 把上面复制的代码替换下方的option{}; javascript: var script docum…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
