当前位置: 首页 > news >正文

​LeetCode解法汇总1749. 任意子数组和的绝对值的最大值

目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:力扣


描述:

给你一个整数数组 nums 。一个子数组 [numsl, numsl+1, ..., numsr-1, numsr] 的 和的绝对值 为 abs(numsl + numsl+1 + ... + numsr-1 + numsr) 。

请你找出 nums 中 和的绝对值 最大的任意子数组(可能为空),并返回该 最大值 。

abs(x) 定义如下:

  • 如果 x 是负整数,那么 abs(x) = -x 。
  • 如果 x 是非负整数,那么 abs(x) = x 。

示例 1:

输入:nums = [1,-3,2,3,-4]
输出:5
解释:子数组 [2,3] 和的绝对值最大,为 abs(2+3) = abs(5) = 5 。

示例 2:

输入:nums = [2,-5,1,-4,3,-2]
输出:8
解释:子数组 [-5,1,-4] 和的绝对值最大,为 abs(-5+1-4) = abs(-8) = 8 。

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

解题思路:

/**

* 1749. 任意子数组和的绝对值的最大值

* 1,-3,2,3,-4

* 2,-5,1,-4,3,-2

* 解题思路:

* 动态规划,构建2个数组dp1和dp2,dp1[i]代表数组右区间为i位,可能的最大的正数数组和,dp2[i]则为负数。

* 遍历的时候,如果nums[i+1] + dp1[i]>0,则dp1[i+1]=nums[i+1] + dp1[i],否则dp1[i+1]=0。dp2也是一样的逻辑。

* 找dp1和dp2最大的绝对值即可。

*/

代码:

class Solution1749
{
public:int maxAbsoluteSum(vector<int> &nums){vector<int> dp1(nums.size());vector<int> dp2(nums.size());if (nums[0] >= 0){dp1[0] = nums[0];dp2[0] = 0;}else{dp1[0] = 0;dp2[0] = nums[0];}int absValue = max(abs(dp1[0]), abs(dp2[0]));for (int i = 1; i < nums.size(); i++){int value = nums[i];if (value >= 0){dp1[i] = value + dp1[i - 1];dp2[i] = min(value + dp2[i - 1], 0);}else{dp1[i] = max(value + dp1[i - 1], 0);dp2[i] = value + dp2[i - 1];}absValue = max(absValue, max(abs(dp1[i]), abs(dp2[i])));}return absValue;}
};

相关文章:

​LeetCode解法汇总1749. 任意子数组和的绝对值的最大值

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣 描述&#xff1a; 给你一个整数数组 nums 。一个子数组 [numsl, numsl1, ..., numsr-1, numsr] 的…...

4.2、Flink任务怎样读取文件中的数据

目录 1、前言 2、readTextFile&#xff08;已过时&#xff0c;不推荐使用&#xff09; 3、readFile&#xff08;已过时&#xff0c;不推荐使用&#xff09; 4、fromSource(FileSource) 推荐使用 1、前言 思考: 读取文件时可以设置哪些规则呢&#xff1f; 1. 文件的格式(tx…...

Effective Java笔记(28)列表优于数组

数组与泛型相比&#xff0c;有两个重要的不同点 。 首先&#xff0c;数组是协变的&#xff08; covariant &#xff09; 。 这个词听起来有点吓人&#xff0c;其实只是表示如果 Sub 为 Super 的子类型&#xff0c;那么数组类型 Sub[ ]就是Super[ ]的子类型。 相反&#xff0c;泛…...

做BI领域的ChatGPT,思迈特升级一站式ABI平台

8月8日&#xff0c;以「指标驱动 智能决策」为主题&#xff0c;2023 Smartbi V11系列新品发布会在广州丽思卡尔顿酒店开幕。 ​ 后疫情时代&#xff0c;BI发展趋势的观察与应对 在发布会上&#xff0c;思迈特CEO吴华夫在开场致辞中表示&#xff0c;当前大环境背景下&#xf…...

ELFK——ELK结合filebeat日志分析系统(2)

目录 一、filebeat 二、ELFK 1.原理简介 2.在ELK基础上部署filebeat 一、filebeat Filebeat&#xff0c;轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat&#xff0c;并指定目录与日志格式&#xff0c;Filebeat 就能快速收集数据&#xff0c;并…...

webSocket 协议是什么

webSocket 协议是什么&#xff0c;能简述一下吗&#xff1f; websocket 协议 HTML5 带来的新协议&#xff0c;相对于 http&#xff0c;它是一个持久连接的协议&#xff0c;它利用 http 协议完成握手&#xff0c;然后通过 TCP 连接通道发送消息&#xff0c;使用 websocket 协议可…...

CentOS 7迁移Anolis OS 8

背景&#xff1a;生产环境客户要求操作系统国产化 操作系统&#xff1a;Centos7.9 内核&#xff1a;5.4.108 服务器可以联网&#xff0c;进行在线迁移&#xff1a; # 下载迁移工具软件源 wget https://mirrors.openanolis.cn/anolis/migration/anolis-migration.repo -O /etc/y…...

Transformer 立体视觉 Depth Estimation

1. Intro 立体深度估计具有重要的意义,因为它能够重建三维信息。为此,在左右相机图像之间匹配相应的像素;对应像素位置的差异,即视差,可以用来推断深度并重建3D场景。最近基于深度学习的立体深度估计方法已经显示出有希望的结果,但仍然存在一些挑战。 其中一个挑战涉及使…...

vue去掉所有输入框两边空格,封装指令去空格,支持Vue2和Vue3,ElementUI Input去空格

需求背景 就是页面很多表单输入框&#xff0c;期望在提交的时候&#xff0c;都要把用户两边的空格去掉 ❌使用 vue 的指令 .trim 去掉空格 中间会输入不了空格&#xff0c; 比如我想输入 你好啊 中国, 这中间的空格输入不了&#xff0c;只能变成 你好啊中国 ❌在提交的时候使用…...

认识FFMPEG框架

FFMPEG全称: Fast Forward Moving Picture Experts Group (MPEG:动态图像专家组) ffmpeg相关网站: git://source.ffmpeg.org/ffmpeg.git http://git.videolan.org/?pffmpeg.git https://github.com/FFmpeg/FFmpeg FFMPEG框架基本组件: AVFormat , AVCodec, AVDevice, AVFil…...

Vue3 大屏数字滚动效果

父组件&#xff1a; <template> <div class"homePage"> <NumRoll v-for"(v, i) in numberList" :key"i" :number"v"></NumRoll> </div> </template> <script setup> import { onMounted, r…...

【深度学习注意力机制系列】—— SENet注意力机制(附pytorch实现)

深度学习中的注意力机制&#xff08;Attention Mechanism&#xff09;是一种模仿人类视觉和认知系统的方法&#xff0c;它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制&#xff0c;神经网络能够自动地学习并选择性地关注输入中的重要信息&#xff…...

go 函数

go 语言函数 go 函数函数定义Go函数的特点如下函数作为参数可变参数相同类型可变参数不同类型可变参数 return语句作用概述空的return语句空白标识符多个返回值命名返回值 defer 语句作用引申出来的面试题for defer下面是一个使用defer的示例代码输出结果 匿名函数定义匿名函数…...

python之正则表达式

目录 正则表达式 python正则表达式方法 match search findall finditer compile 元字符匹配 元字符 量词 贪婪匹配和惰性匹配 正则表达式的group 语法 案例 正则表达式 正则表达式又称规则表达式&#xff0c;是使用单个字符串来描述、匹配某个句法规则的字符串…...

【LeetCode每日一题】——219.存在重复元素II

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 哈希表 二【题目难度】 简单 三【题目编号】 219.存在重复元素II 四【题目描述】 给你一个…...

篇六:适配器模式:让不兼容变兼容

篇六&#xff1a;“适配器模式&#xff1a;让不兼容变兼容” 开始本篇文章之前先推荐一个好用的学习工具&#xff0c;AIRIght&#xff0c;借助于AI助手工具&#xff0c;学习事半功倍。欢迎访问&#xff1a;http://airight.fun/ 另外有2本不错的关于设计模式的资料&#xff0c…...

【云原生】Docker-compose中所有模块学习

compose模块 模板文件是使用 Compose 的核心&#xff0c;涉及到的指令关键字也比较多。但大家不用担心&#xff0c;这里面大部分指令跟 docker run 相关参数的含义都是类似的。 默认的模板文件名称为 docker-compose.yml&#xff0c;格式为 YAML 格式。 version: "3&quo…...

广义积分练习

前置知识 无穷限积分瑕积分 练习 计算 ∫ 0 ∞ 1 x ( 1 x ) d x \int_0^{\infty}\dfrac{1}{\sqrt x(1x)}dx ∫0∞​x ​(1x)1​dx 解&#xff1a; x 0 \qquad x0 x0为瑕点 \qquad 原式 lim ⁡ a → 0 lim ⁡ b → ∞ ∫ a b 1 x ( 1 x ) d x lim ⁡ a → 0 lim ⁡…...

element-ui树形表格,左边勾选,右边显示选中的数据-功能(如动图)

功能如图 功能需求 表格树形表格勾选数据&#xff0c;右边显示对应勾选的数据内容&#xff0c;选中客户&#xff0c;自动勾选所有的店铺(子级)&#xff0c;选中其中一个店铺&#xff0c;自动勾选上客户(父级)&#xff0c;同时会存在只有客户&#xff08;下面没有子级的情况&am…...

Android数字价格变化的动画效果的简单实现

原理&#xff1a;使用ValueAnimator属性动画类实现&#xff0c;它通过值的改变手动设置对象的属性值来实现动画效果。直接贴代码&#xff1a; public static void doNumberAnim(TextView tvPrice, float startNumber, float endNumber) {ValueAnimator animator ValueAnimato…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...