当前位置: 首页 > news >正文

论文讲解——TPU-MLIR: A Compiler For TPU Using MLIR

论文讲解——TPU-MLIR: A Compiler For TPU Using MLIR

  • https://arxiv.org/pdf/2210.15016.pdf
    • 概览
    • 模型转换
    • Translation
    • Canonicalize
    • Lowering
    • LayerGroup + Bufferization
    • Calibration + Quantization
    • Correctness Check
    • 相关资料

https://arxiv.org/pdf/2210.15016.pdf

本文将对TPU-MLIR的论文进行讲解,介绍其编译流程及内部工作机制,帮助读者在之后的开发流程中更好地开源。

概览

在这里插入图片描述

TPU-MLIR概括有如下四个特点:

  1. 多框架统一处理 ,支持多种神经网络框架(pytorch/onnx/tensorflow/paddlepaddle等),且处理流程完全统一;
  2. 分层设计 ,将网络模型抽象成2层处理:
    1. TOP层,与芯片无关层,包括图优化、量化、推理等等;
    2. TPU层,与芯片相关层、包括权重重排、算子切分、地址分配、推理等等;
  3. 正确性保证
    1. TOP层推理结果与ONNX结果对比验证,确保一致;
    2. TPU层推理结果与TOP层对比,确保精度可靠;
    3. Cmodel推理结果与TPU层对比,确保硬件一致性;
      4.过程可跟踪,每一步的转换可以生成MLIR,用于跟踪和调试。

模型转换

在这里插入图片描述

  • ONNX
  • Caffe
  • TFLite
  • Pytorch/Tensorflow/PaddlePaddle --> ONNX
    ONNX提供了丰富的算子和一些基础数据类型,其通过多个node来定义计算图,每个node定义了输入(input)、输出(output)、类型和属性等,输入输出都是符号(symbol),通过这些符号的关系来确定计算依赖,完成计算图的定义。

Pytorch/Tensorflow/PaddlePaddle --> ONNX过程由外部工具完成。

Translation

在这里插入图片描述
ONNX/Caffe/TFlite --> TOP MLIR
TOP DIalect接近于原始计算图,Op的定义与ONNX和Pytorch近似,表示高层的抽象计算,与具体硬件无关。
代码位置:

./tpu-mlir/python/transform
|--BaseConverter.py
|--CMakeLists.txt
|--CaffeConverter.py
|--MLIRImporter.py
|--OnnxConverter.py
...

举例:resnet18.onnx --> resnet18_opt.onnx --> final_opt.onnx --> resnet18_origin.mlir

Canonicalize

包含算子融合,计算化简等。
使用MLIR自带的class。
在这里插入图片描述
代码位置:

./tpu-mlir/lib/Dialect/Top/Canonicalize
|--Add.cpp
|--BatchNorm.cpp
|--Compare.cpp
|--Concat.cpp
|--Conv.cpp
...
|--Scale.cpp

scale函数
左边为原始mlir文件,右边为优化后;左边多个scale合并为一个scale,scale又转化为一个conv的过程。

tpuc-opt --init --canonicalize --mark-FLOPs --save-weight --mlir-print-debuginfo Scale_original.mlir -o Scale.mlir

Lowering

在这里插入图片描述
将TOP Dialect转化为TPU Dialect。
TPU Dialect是用于表示TPU芯片的Kernel库,与具体的设备有关。TPU Dialect可以表示内存分配,软件流水,计算和数据读写并行等与最终指令生成相关的信息。
该过程包含:

  1. Operation Conversion
  2. Type Conversion

代码位置:

./tpu-mlir/lib/Conversion/TopToTpue
|--BM1684
|--BM1684X
|--CMakeLists.txt
|--CV18xx
|--LoweringBM1684.cpp
|--LoweringBM1684X.cpp
|--LoweringCV18xx.cpp
|--TopLowering.cpp
|--TopToTpuPass.cpp

LayerGroup + Bufferization

在这里插入图片描述

  1. Tile+Fuse (layer group)
  2. 用重复计算代替部分数据搬运
  3. 计算与数据搬运并行
  4. Memory分配优化

代码位置:

./tpu-mlir/lib/Dialect/Tpu/Transforms
|--AddressAssign.cpp
|--BM168X
|--CV18xx
|--DynamicLayer.cpp
|--DynamicNetlr.cpp
...
|--LayerGroup
|--LayerGroup.cpp
|--StripIOQuant.cpp
|--SubnetDivide.cpp
|--WeightReorder.cpp

LayerGroup过程:
在这里插入图片描述
通过深层次的依赖关系来进行更为合理的切割:越深依赖关系越复杂,不限于一个op层,不是在一层conv上做切割,而是计算一个conv输出被下一个conv利用的相关性,做整个group的相关性的切割,用计算来代替搬运。

Calibration + Quantization

对经过优化的TOP MLIR进行多次前向推理,获取每个中间Tensor的数据,并计算它们的统计信息,通过KL方法得到初步的阈值,然后使用误差/余弦相似度方式再微调阈值,是的INT8的计算结果和FP32的结果尽量相似。
在这里插入图片描述
代码位置:

./tpu-mlir/python/calibration
|--data
|--data_selector.py
|--gen_data_list.py
|--kid_calibrator.py
|--mix_precision.py

在这里插入图片描述
得到量化表:

run_calibration.py resnet18.mlir --dataset ./test_img/ --input_num 100 --tune_num 5 -o resnet18_cali_table

在这里插入图片描述
将量化表导入到tpu mlir中去:

... --import-calibration-table=“file ...

Correctness Check

在这里插入图片描述
TPU-MLIR提供对TOP和TPU Dialect的Inference。通过比较对应数据的相似性,来确定整个转化/编译过程的正确性。同时由于可以比较每个中间Tensor的结果,开发者可以快速地定位错误点,便于Debug。
在这里插入图片描述
代码位置:

./tpu-mlir/lib/Dialect/Top/
|--Interfaces
|--Transforms./tpu-mlir/lib/Dialect/Top/
|--BM684
|--BM684X
|--CV18xx
|--Common./tpu-mlir/lib/Support
|--Dnnl
|--ModuleInterpreter.cpp
...

在这里插入图片描述

相关资料

  1. 按照Readme操作,了解运行过程:https://github.com/sophgo/tpu-mlir
  2. TPU-MLIR的设计思路:https://arxiv.org/abs/2210.15016
  3. 开发计划:https://github.com/sophgo/tpu-mlir/wiki/Roadmap%5BCN%5D
  4. 工程结构:https://github.com/sophgo/tpu-mlir/wiki/Tutorial%5BCN%5D
  5. 技术细节可以参考:https://tpumlir.org/docs/deverloper_manual/index.html
  6. TPU-MLIR官网https://tpumlir.org/获得更多信息,包括文档和视频资料

欢迎大家一起参与学习和开发TPU-MLIR。

相关文章:

论文讲解——TPU-MLIR: A Compiler For TPU Using MLIR

论文讲解——TPU-MLIR: A Compiler For TPU Using MLIR https://arxiv.org/pdf/2210.15016.pdf概览模型转换TranslationCanonicalizeLoweringLayerGroup BufferizationCalibration QuantizationCorrectness Check相关资料 https://arxiv.org/pdf/2210.15016.pdf 本文将对TPU…...

基于最新导则下生态环评报告编制技术暨报告篇、制图篇、指数篇、综合应用篇系统性实践技能提升

查看原文>>>基于最新导则下生态环评报告编制技术暨报告篇、制图篇、指数篇、综合应用篇系统性实践技能提升 目录 专题一、生态环评报告编制规范 专题二、土地利用图 专题三、植被类型及植被覆盖度图 专题四、物种适宜生境分布图 专题五、生物多样性测定 专题六…...

NGZORRO:动态表单/模型驱动 的相关问题

官网的demo的[nzFor]"control.controlInstance"&#xff0c;似乎是靠[formControlName]"control.controlInstance"来关联的。 <form nz-form [formGroup]"validateForm" (ngSubmit)"submitForm()"><nz-form-item *ngFor&quo…...

第十七次CCF计算机软件能力认证

第一题&#xff1a;小明种苹果 n , m map(int , input().split()) t , k , p 0 , 0 , -1 for _ in range(n):l list(map(int , input().split()))t sum(l)x -sum(l[i] for i in range(1 , len(l)))if x > p:p xk _ 1 print(t , k , p) 第二题&#xff1a;小明种苹…...

ApplicationContext在Spring Boot中是如何创建的?

一、ApplicationContext在Spring Boot中是如何创建的&#xff1f; 1. SpringApplication ApplicationContextFactory有三个实现类&#xff0c;分别是AnnotationConfigReactiveWebServerApplicationContext.Factory、AnnotationConfigServletWebServerApplicationContext.Facto…...

后端开发7.轮播图模块【mongdb开发】

概述 轮播图模块数据库采用mongdb开发 效果图 数据库设计 创建数据库 use sc; 添加数据 db.banner.insertMany([ {bannerId:"1",bannerName:"商城轮播图1",bannerUrl:"http://xx:8020/img/轮播图/shop1.png"}, {bannerId:"2"…...

Linux常用命令(一):创建文件目录

一、touch&#xff1a; 1、作用&#xff1a; 1). 改变已有文件的时间戳属性&#xff0c;修改文件时间戳时&#xff0c;用户必须的文件的属主&#xff0c;或者拥有写文件的权限 2). 创建新的空文件 2、语法&#xff1a; touch [option] 文件名 ,后面可跟多个文件名3、示例 …...

如何创建一个Vue组件?如何在父组件和子组件之间传递数据?如何在子组件中向父组件发送消息?

1、如何创建一个Vue组件&#xff1f; 要创建一个Vue组件&#xff0c;可以按照以下步骤进行&#xff1a; 安装Vue CLI&#xff08;如果还没有安装&#xff09;&#xff1a; npm install -g vue/cli创建一个新的Vue组件&#xff1a; vue create my-component在 src/component…...

设计模式之适配器模式

一、概述 将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 二、适用性 1.你想使用一个已经存在的类&#xff0c;而它的接口不符合你的需求。 2.你想创建一个可以复用的类&#xff0c;该类可以与其他不…...

让ChatGPT介绍一下ChatGPT(ChatGPT的自我介绍)

ChatGPT是这样介绍自己的&#xff1a; ChatGPT是由OpenAI开发的一种基于大规模预训练的语言模型。它是建立在GPT&#xff08;Generative Pre-trained Transformer&#xff09;架构的基础上&#xff0c;经过大量的数据训练而成。 ChatGPT旨在通过对话与用户进行交互&#xff0…...

CentOS 7 构建 LVS-DR 群集

一、LVS-DR集群摘要 LVS&#xff08;Linux Virtual Server&#xff09;是一个用于构建可扩展和高可用性的负载均衡集群的软件。它基于Linux操作系统&#xff0c;并提供了一种将网络流量分发到多个后端服务器的机制。 二、基本工作原理 配置负载均衡器&#xff1a;在LVS集群中…...

MySQL8.0.33二进制包安装与部署

官方文档 https://downloads.mysql.com/archives/community/https://dev.mysql.com/doc/refman/8.1/en/binary-installation.html官方文档操作步骤 # Preconfiguration setup $> groupadd mysql $> useradd -r -g mysql -s /bin/false mysql # Beginning of source-build…...

RocketMQ发送消息失败:error CODE: 14 DESC: service not available now, maybe disk full

在执行业务时&#xff0c;发现MQ控制台没有查询到消息&#xff0c;在日志中发现消息发送失败&#xff0c;报错error CODE: 14 DESC: service not available now, maybe disk full 分析报错应该是磁盘空间不足&#xff0c;导致broker不能进行正常的消息存储刷盘&#xff0c;去查…...

1.Fay-UE5数字人工程导入(UE数字人系统教程)

非常全面的数字人解决方案(含源码) Fay-UE5数字人工程导入 1、工程下载&#xff1a;xszyou/fay-ue5: 可对接fay数字人的ue5工程 (github.com) 2、ue5下载安装&#xff1a;Unreal Engine 5 3、ue5插件安装 依次安装以下几个插件 4、双击运行工程 5、切换中文 6、检…...

Linux 终端操作命令(2)内部命令分类

Linux 终端操作命令 也称Shell命令&#xff0c;是用户与操作系统内核进行交互的命令解释器&#xff0c;它接收用户输入的命令并将其传递给操作系统进行执行&#xff0c;可分为内部命令和外部命令。内部命令是Shell程序的一部分&#xff0c;而外部命令是独立于Shell的可执行程序…...

【数据结构与算法】十大经典排序算法-插入排序

&#x1f31f;个人博客&#xff1a;www.hellocode.top &#x1f3f0;Java知识导航&#xff1a;Java-Navigate &#x1f525;CSDN&#xff1a;HelloCode. &#x1f31e;知乎&#xff1a;HelloCode &#x1f334;掘金&#xff1a;HelloCode ⚡如有问题&#xff0c;欢迎指正&#…...

如何使用PHP Smarty进行条件判断和循环?

欢迎来到PHP Smarty的世界&#xff01;如果你想要在Smarty中执行条件判断和循环&#xff0c;那么你需要了解一些基本的语法和结构。 首先&#xff0c;让我们从条件判断开始吧&#xff01;在Smarty中&#xff0c;你可以使用{if}、{elseif}和{else}语句来进行条件判断。这些语句的…...

使用svg生成图像

使用svg生成图像 每个HTML开发人员都应该对可伸缩的向量图形有一个基本的理解。本文会通过使用svg创建一个雨伞图像来介绍一下svg的基本知识。 svg介绍 SVG 意为可缩放矢量图形&#xff08;Scalable Vector Graphics&#xff09;。是一种可以在HTML中创建图像的方式。 我们…...

DNS、ARP

目录 DNS以及它的用途 DNS的解析方式 DNS的查询方式 DNS使用TCP/UDP DNS劫持 常见的DNS劫持现象 DNS劫持与HTTP劫持的不同 处理DNS劫持 DNS缓存 DNS实现负载均衡 ARP以及他的工作原理 DNS以及它的用途 DNS是域名解析服务器&#xff0c;用来将域名解析成IP。DNS工作在…...

uniapp 微信小程序 echarts地图 点击显示类目

效果如图&#xff1a; 在tooltip内axisPointer内添加 label:{show:true} 即可显示“请求离婚”的标题...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...