Python-OpenCV中的图像处理-图像金字塔
Python-OpenCV中的图像处理-图像金字塔
- 图像金字塔
- 高斯金字塔
- 拉普拉斯金字塔
- 金字塔图像融合
图像金字塔
- 同一图像的不同分辨率的子图集合,如果把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。
- cv2.pyrUp():上采样
- cv2.pyrDown():下采样

高斯金字塔
高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的。顶部图像中的每个像素值等于下一层图像中 5 个像素的高斯加权平均值。这样操作一次一个 MxN 的图像就变成了一个 M/2xN/2 的图像。所以这幅图像的面积就变为原来图像面积的四分之一。这被称为 Octave。连续进行这样的操作我们就会得到一个分辨率不断下降的图像金字塔。我们可以使用函数cv2.pyrDown() 和 cv2.pyrUp() 构建图像金字塔。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 图像金字塔 :同一图像的不同分辨率的子图集合
# 有两种:高斯金字塔(Gaussian Pyramid) 和 拉普拉斯金字塔(Pyramid)
# 高斯金字塔 每次处理后图像的面积变为原来的四分之一,也被称为Octave
# cv2.pyrDown() #分辨率降低
# cv2.pyrUp() #分辨率增高img = cv2.imread('./resource/opencv/image/messi5.jpg')
lower_reso = cv2.pyrDown(img)
lower_reso2 = cv2.pyrDown(lower_reso)upper_reso = cv2.pyrUp(lower_reso2)
upper_reso2 = cv2.pyrUp(upper_reso)cv2.imshow('img', img)
cv2.imshow('lower_reso', lower_reso)
cv2.imshow('lower_reso2', lower_reso2)
cv2.imshow('upper_reso', upper_reso)
cv2.imshow('upper_reso2', upper_reso2)
cv2.waitKey(0)
cv2.destroyAllWindows()

拉普拉斯金字塔
拉普拉斯金字塔可以有高斯金字塔计算得来,公式如下:
Li = Gi - pyrUp( Gi + 1 )
式中:
- Li:表示拉普拉斯金字塔中的第i层
- Gi:表示高斯金字塔中的第i层
拉普拉金字塔的图像看起来就像边界图,其中很多像素都是 0。他们经常
被用在图像压缩中。

图中各标记含义如下:
- G0、G1、G2、G3分别是高斯金字塔的第0层、第1层、第2层、第3层。
- L0、L1、L2、分别是拉普拉斯金字塔的第0层、第1层、第2层。
- 向下的箭头表示向下采样操作(对应cv2.pyrDown()函数)
- 向右的箭头表示向上采样操作(对应cv2.pyrUp() 函数)
- "+"表示加法操作
- "-"表示减法操作
上图中的操作关系有:
向下采样:
- G1 = cv2.pyrDown(G0)
- G2 = cv2.pyrDown(G1)
- G3 = cv2.pyrDown(G2)
拉普拉斯金字塔:
- L0 = G0 - cv2.pyrUp(G1)
- L1 = G1 - cv2.pyrUp(G2)
- L2 = G2 - cv2.pyrUp(G3)
向上采样恢复高分辨率图像:
- G0 = L0 + cv2.pyrUp(G1)
- G1 = L1 + cv2.pyrUp(G2)
- G2 = L2 + cv2.pyrUp(G3)
上述关系是通过数学运算推导得到的。例如,已知L0=G0-cv2.pyrUp(G1),将表达式右侧的cv2.pyrUp(G1)移到左侧,就得到了表达式G0 = L0 + cv2.pyrUp(G1)。除此之外,G1和G2都可以通过拉普拉斯金字塔的构造表达式得到。如之前介绍的,拉普拉斯金字塔的目的就是为了恢复高分辨率的图像。
# 拉普拉斯金字塔构建
G0 = cv2.imread("./resource/opencv/image/lena.jpg")
cv2.imshow("input image",G0)
G1=cv2.pyrDown(G0)
G2=cv2.pyrDown(G1)
G3=cv2.pyrDown(G2)
G4=cv2.pyrDown(G3)
L0 = cv2.subtract(G0,cv2.pyrUp(G1))
L1 = cv2.subtract(G1,cv2.pyrUp(G2))
L2 = cv2.subtract(G2,cv2.pyrUp(G3))
L3 = cv2.subtract(G3,cv2.pyrUp(G4))
cv2.imshow("G1",G1)
cv2.imshow("G2",G2)
cv2.imshow("G3",G3)
cv2.imshow("G4",G4)
cv2.waitKey(0)
cv2.destroyAllWindows()
import numpy as np
import cv2# 拉普拉斯金字塔是由高斯金字塔计数得到,公式如下
# Li = Gi - PyrUP(PyrDown(Gi))# 拉普拉斯金字塔图像看起来像是边界图,其中很多像素都是0,常被用在图像压缩中。import cv2 as cvif __name__ == '__main__':img = cv.imread("./resource/opencv/image/lena.jpg")down1 = cv.pyrDown(img)res = img - cv.pyrUp(down1)down2 = cv.pyrDown(down1)res2 = down1 - cv.pyrUp(down2)cv.imshow("img", img)cv.imshow("res", res)cv.imshow("res2", res2)cv.waitKey(0)cv.destroyAllWindows()

金字塔图像融合
import numpy as np
import cv2
import sys# 实现上述效果的步骤如下:
# 1. 读入两幅图像,苹果和橘子
# 2. 构建苹果和橘子的高斯金字塔( 6 层)
# 3. 根据高斯金字塔计算拉普拉斯金字塔
# 4. 在拉普拉斯的每一层进行图像融合(苹果的左边与橘子的右边融合)
# 5. 根据融合后的图像金字塔重建原始图像。A = cv2.imread('./resource/opencv/image/apple.jpg')
B = cv2.imread('./resource/opencv/image/orange.jpg')
print(A.shape)
print(B.shape)
# 生成高斯金字塔
G = A.copy()
gpA = [G]
for i in range(5):G = cv2.pyrDown(G)gpA.append(G)G = B.copy()
gpB = [G]
for i in range(5):G = cv2.pyrDown(G)gpB.append(G)
# 产生Laplacian金字塔
lpA = [gpA[5]]
for i in range(5,0,-1):GE = cv2.pyrUp(gpA[i])L = cv2.subtract(gpA[i-1],GE)lpA.append(L)lpB = [gpB[5]]
for i in range(5,0,-1):GE = cv2.pyrUp(gpB[i])L = cv2.subtract(gpB[i-1],GE)lpB.append(L)
# 合并
LS = []
for la,lb in zip(lpA,lpB):rows,cols,dpt = la.shapels = np.hstack((la[:,0:cols//2], lb[:,cols//2:]))LS.append(ls)
# 重新构建图像
ls_ = LS[0]
for i in range(1,6):ls_ = cv2.pyrUp(ls_)ls_ = cv2.add(ls_, LS[i])
# 连接
real = np.hstack((A[:,:cols//2],B[:,cols//2:]))
cv2.imshow("apple",A)
cv2.imshow("orange",B)
cv2.imshow("LS",ls_)
cv2.imshow("Real",real)
cv2.waitKey()
cv2.destroyAllWindows()

相关文章:
Python-OpenCV中的图像处理-图像金字塔
Python-OpenCV中的图像处理-图像金字塔 图像金字塔高斯金字塔拉普拉斯金字塔 金字塔图像融合 图像金字塔 同一图像的不同分辨率的子图集合,如果把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。cv2…...
ArcGIS、ENVI、InVEST、FRAGSTATS技术教程
专题一 空间数据获取与制图 1.1 软件安装与应用讲解 1.2 空间数据介绍 1.3海量空间数据下载 1.4 ArcGIS软件快速入门 1.5 Geodatabase地理数据库 专题二 ArcGIS专题地图制作 2.1专题地图制作规范 2.2 空间数据的准备与处理 2.3 空间数据可视化:地图符号与注…...
Unity-Linux部署WebGL项目MIME类型添加
在以往的文章中有提到过使用IIS部署WebGL添加MIME类型使WebGL项目在浏览器中能够正常加载,那么如果咱们做的是商业项目,往往是需要部署在学校或者云服务器上面的,大部分情况下如果项目有接口或者后台管理系统,后台基本都会使用Lin…...
MySQL:表的约束和基本查询
表的约束 表的约束——为了让插入的数据符合预期。 表的约束很多,这里主要介绍如下几个: null/not null,default, comment, zerofill,primary key,auto_increment,unique key 。 空属性 两个值:null&am…...
mysql统计近7天数据量,,按时间戳分组
可以使用以下 SQL 语句来统计近7天的数据量,并按时间戳分组。如果某一天没有数据,则将其填充为0。 SELECT DATE_FORMAT(FROM_UNIXTIME(timestamp), %Y-%m-%d) AS date,COUNT(*) AS count FROM table_name WHERE timestamp > UNIX_TIMESTAMP(DATE_SUB…...
无涯教程-Perl - endnetent函数
描述 此功能告诉系统您不再希望使用getnetent从网络列表中读取条目。 语法 以下是此函数的简单语法- endnetent返回值 此函数不返回任何值。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perluse Socket;while ( ($name, $aliases, $addrtype, $net) getnetent() )…...
Selenium的xpath高级写法-实用篇
系列文章目录 提示:阅读本章之前,请先阅读目录 文章目录 系列文章目录前言获取父级获取前一个兄弟级获取后一个兄弟级获取内容包含某些内容获取内容是空 前言 获取父级 //div[text()‘我是子级’]/parent::div[text()‘我是父级’] 获取前一个兄弟级 //d…...
阿里云官方关于数据安全保护的声明
“阿里云监控用户的数据流量?”“真的假的?”随着近日早晨 朱峰肥鹅旅行 对阿里云的一条朋友圈截图传遍了整个IT圈。 对于网络上的各种传播,以下是阿里云的官方答复,原文如下: 关于数据安全保护的声明 今天有客户反映…...
【神经网络手写数字识别-最全源码(pytorch)】
Torch安装的方法 学习方法 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程2.直接就上案例就行,先来跑,遇到什么来解决什么 Mnist分类任务: 网络基本构建与训练方法,常用函数解析…...
React、Vue和Angular的优缺点
React React 是一个用于构建用户界面的 JAVASCRIPT 库。React 主要用于构建 UI,很多人认为 React 是 MVC 中的 V(视图)。React 起源于 Facebook 的内部项目,用来架设 Instagram 的网站,并于 2013 年 5 月开源。React …...
ArcGIS Pro根据不同条件显示不同标注
在某些情况下,我们需要根据不同的条件在地图上进行标注,比如我们想要在地图上显示广东省人口从2005年到2010年的变化情况,可以使用ArcGIS Pro的标注类功能实现,这里为大家介绍一下制作方法,希望能对你有所帮助。 标注分…...
DynamicsCRM专栏导览
不知不觉,专栏已经有5个订阅了。很高兴,自己的付出有了回报。很感谢大家的信任。 大家的订阅给了我很好的正反馈,也让我有了更强的动力,更大的责任感,去把这个专栏做好。 于是就有了这篇导览。这篇导览是我根据过往的开发经验总结出来的一个学习的框架。有些部分可能还没…...
Vue自定义指令使用
本篇文章讲述使用Vue自定义指令,并在项目中完成相应功能。 在平常Vue脚手架项目中,使用到 自定义指令较少,一般都是使用的自带指令,比如 v-show 、v-if 、 v-for 、 v-bind 之类的。这些已经能够满足大多数项目使用。更多的可能也…...
python爬虫之scrapy框架介绍
一、Scrapy框架简介 Scrapy 是一个开源的 Python 库和框架,用于从网站上提取数据。它为自从网站爬取数据而设计,也可以用于数据挖掘和信息处理。Scrapy 可以从互联网上自动爬取数据,并将其存储在本地或在 Internet 上进行处理。Scrapy 的目标…...
winform中嵌入cefsharp, 并使用selenium控制
正常说, 需要安装的包 下面是所有的包 全部代码 using OpenQA.Selenium.Chrome; using OpenQA.Selenium; using System; using System.Windows.Forms; using CefSharp.WinForms; using CefSharp;namespace WindowsFormsApp2 {public partial class Form1 : Form{//…...
【leetcode】349. 两个数组的交集(easy)
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 思路: 先遍历nums1将其元素不重复地添加到哈希表a中;建立哈希表dup用于存储b和a重复的元素;遍历nums2…...
leetcode 2616. 最小化数对的最大差值
在数组nums中找到p个数对,使差值绝对值的和最小。 思路: 最小差值应该是数值相近的一对数之间产生,让数值相近的数字尽量靠在一起方便计算,所以需要排序。 这里不去直接考虑一对对的数字,而是直接考虑差值的取值。 …...
npm install 安装慢的问题处理
原因 npm install 默认使用的安装镜像时国外的镜像,国内使用会受到网络的限制。 解决方案 更换网络更换npm的安装镜像为国内,比如: npm config set registry https://registry.npm.taobao.org...
【JAVA】七大排序算法(图解)
稳定性: 待排序的序列中若存在值相同的元素,经过排序之后,相等元素的先后顺序不发生改变,称为排序的稳定性。 思维导图: (排序名称后面蓝色字体为时间复杂度和稳定性) 1.直接插入排序 核心思…...
UNIX 系统概要
UNIX 家族UNIX 家谱家族后起之秀 LinuxUNIX vs LinuxUNIX/Linux 应用领域 UNIX 操作系统诞生与发展UNIX 操作系统概要内核常驻模块shell虚拟计算机特性 其他操作系统 LinuxRichard StallmanGNU 项目FSF 组织GPL 协议Linus Torvalds UNIX 家族 有人说,这个世界上只有…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
leetcode73-矩阵置零
leetcode 73 思路 记录 0 元素的位置:遍历整个矩阵,找出所有值为 0 的元素,并将它们的坐标记录在数组zeroPosition中置零操作:遍历记录的所有 0 元素位置,将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...
