【神经网络手写数字识别-最全源码(pytorch)】
Torch安装的方法
学习方法
- 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程
- 2.直接就上案例就行,先来跑,遇到什么来解决什么
Mnist分类任务:
-
网络基本构建与训练方法,常用函数解析
-
torch.nn.functional模块
-
nn.Module模块
读取Mnist数据集
- 会自动进行下载
# 查看自己的torch的版本
import torch
print(torch.__version__)
%matplotlib inline
# 前两步,不用管是在网上下载数据,后续的我们都是在本地的数据进行操作
from pathlib import Path
import requestsDATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"PATH.mkdir(parents=True, exist_ok=True)URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content)
import pickle
import gzipwith gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")
784是mnist数据集每个样本的像素点个数
from matplotlib import pyplot
import numpy as nppyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)
全连接神经网络的结构
注意数据需转换成tensor才能参与后续建模训练
import torchx_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())
torch.nn.functional 很多层和函数在这里都会见到
torch.nn.functional中有很多功能,后续会常用的。那什么时候使用nn.Module,什么时候使用nn.functional呢?一般情况下,如果模型有可学习的参数,最好用nn.Module,其他情况nn.functional相对更简单一些
import torch.nn.functional as Floss_func = F.cross_entropydef model(xb):return xb.mm(weights) + bias
bs = 64
xb = x_train[0:bs] # a mini-batch from x
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype = torch.float, requires_grad = True)
bs = 64
bias = torch.zeros(10, requires_grad=True)print(loss_func(model(xb), yb))
创建一个model来更简化代码
- 必须继承nn.Module且在其构造函数中需调用nn.Module的构造函数
- 无需写反向传播函数,nn.Module能够利用autograd自动实现反向传播
- Module中的可学习参数可以通过named_parameters()或者parameters()返回迭代器
from torch import nnclass Mnist_NN(nn.Module):# 构造函数def __init__(self):super().__init__()self.hidden1 = nn.Linear(784, 128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256, 10)self.dropout = nn.Dropout(0.5)#前向传播自己定义,反向传播是自动进行的def forward(self, x):x = F.relu(self.hidden1(x))x = self.dropout(x)x = F.relu(self.hidden2(x))x = self.dropout(x)#x = F.relu(self.hidden3(x))x = self.out(x)return x
net = Mnist_NN()
print(net)
可以打印我们定义好名字里的权重和偏置项
for name,parameter in net.named_parameters():print(name, parameter,parameter.size())
使用TensorDataset和DataLoader来简化
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoadertrain_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)
def get_data(train_ds, valid_ds, bs):return (DataLoader(train_ds, batch_size=bs, shuffle=True),DataLoader(valid_ds, batch_size=bs * 2),)
- 一般在训练模型时加上model.train(),这样会正常使用Batch Normalization和 Dropout
- 测试的时候一般选择model.eval(),这样就不会使用Batch Normalization和 Dropout
import numpy as npdef fit(steps, model, loss_func, opt, train_dl, valid_dl):for step in range(steps):model.train() # 训练的时候需要更新权重参数for xb, yb in train_dl:loss_batch(model, loss_func, xb, yb, opt)model.eval() # 验证的时候不需要更新权重参数with torch.no_grad():losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl])val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)print('当前step:'+str(step), '验证集损失:'+str(val_loss))
zip的用法
a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)
print(list(zipped))
a2,b2 = zip(*zip(a,b))
print(a2)
print(b2)
from torch import optim
def get_model():model = Mnist_NN()return model, optim.SGD(model.parameters(), lr=0.001)
def loss_batch(model, loss_func, xb, yb, opt=None):loss = loss_func(model(xb), yb)if opt is not None:loss.backward()opt.step()opt.zero_grad()return loss.item(), len(xb)
三行搞定!
train_dl,valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(100, model, loss_func, opt, train_dl, valid_dl)
correct = 0
total = 0
for xb,yb in valid_dl:outputs = model(xb)_,predicted = torch.max(outputs.data,1)total += yb.size(0)correct += (predicted == yb).sum().item()
print(f"Accuracy of the network the 10000 test imgaes {100*correct/total}")

【神经网络手写数字识别-最全源码(pytorch)】
Torch安装的方法 学习方法 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程2.直接就上案例就行,先来跑,遇到什么来解决什么 Mnist分类任务: 网络基本构建与训练方法,常用函数解析…...
React、Vue和Angular的优缺点
React React 是一个用于构建用户界面的 JAVASCRIPT 库。React 主要用于构建 UI,很多人认为 React 是 MVC 中的 V(视图)。React 起源于 Facebook 的内部项目,用来架设 Instagram 的网站,并于 2013 年 5 月开源。React …...

ArcGIS Pro根据不同条件显示不同标注
在某些情况下,我们需要根据不同的条件在地图上进行标注,比如我们想要在地图上显示广东省人口从2005年到2010年的变化情况,可以使用ArcGIS Pro的标注类功能实现,这里为大家介绍一下制作方法,希望能对你有所帮助。 标注分…...
DynamicsCRM专栏导览
不知不觉,专栏已经有5个订阅了。很高兴,自己的付出有了回报。很感谢大家的信任。 大家的订阅给了我很好的正反馈,也让我有了更强的动力,更大的责任感,去把这个专栏做好。 于是就有了这篇导览。这篇导览是我根据过往的开发经验总结出来的一个学习的框架。有些部分可能还没…...

Vue自定义指令使用
本篇文章讲述使用Vue自定义指令,并在项目中完成相应功能。 在平常Vue脚手架项目中,使用到 自定义指令较少,一般都是使用的自带指令,比如 v-show 、v-if 、 v-for 、 v-bind 之类的。这些已经能够满足大多数项目使用。更多的可能也…...

python爬虫之scrapy框架介绍
一、Scrapy框架简介 Scrapy 是一个开源的 Python 库和框架,用于从网站上提取数据。它为自从网站爬取数据而设计,也可以用于数据挖掘和信息处理。Scrapy 可以从互联网上自动爬取数据,并将其存储在本地或在 Internet 上进行处理。Scrapy 的目标…...

winform中嵌入cefsharp, 并使用selenium控制
正常说, 需要安装的包 下面是所有的包 全部代码 using OpenQA.Selenium.Chrome; using OpenQA.Selenium; using System; using System.Windows.Forms; using CefSharp.WinForms; using CefSharp;namespace WindowsFormsApp2 {public partial class Form1 : Form{//…...
【leetcode】349. 两个数组的交集(easy)
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 思路: 先遍历nums1将其元素不重复地添加到哈希表a中;建立哈希表dup用于存储b和a重复的元素;遍历nums2…...

leetcode 2616. 最小化数对的最大差值
在数组nums中找到p个数对,使差值绝对值的和最小。 思路: 最小差值应该是数值相近的一对数之间产生,让数值相近的数字尽量靠在一起方便计算,所以需要排序。 这里不去直接考虑一对对的数字,而是直接考虑差值的取值。 …...
npm install 安装慢的问题处理
原因 npm install 默认使用的安装镜像时国外的镜像,国内使用会受到网络的限制。 解决方案 更换网络更换npm的安装镜像为国内,比如: npm config set registry https://registry.npm.taobao.org...

【JAVA】七大排序算法(图解)
稳定性: 待排序的序列中若存在值相同的元素,经过排序之后,相等元素的先后顺序不发生改变,称为排序的稳定性。 思维导图: (排序名称后面蓝色字体为时间复杂度和稳定性) 1.直接插入排序 核心思…...

UNIX 系统概要
UNIX 家族UNIX 家谱家族后起之秀 LinuxUNIX vs LinuxUNIX/Linux 应用领域 UNIX 操作系统诞生与发展UNIX 操作系统概要内核常驻模块shell虚拟计算机特性 其他操作系统 LinuxRichard StallmanGNU 项目FSF 组织GPL 协议Linus Torvalds UNIX 家族 有人说,这个世界上只有…...

Unity 基础函数
Mathf: //1.π-PI print(Mathf.PI); //2.取绝对值-Abs print(Mathf.Abs(-10)); print(Mathf.Abs(-20)); print(Mathf.Abs(1)); //3.向上取整-Ce il To In t float f 1.3f; int i (int)f; …...

【学习】若依源码(前后端分离版)之 “ 上传图片功能实现”
大型纪录片:学习若依源码(前后端分离版)之 “ 上传图片功能实现” 前言前端部分后端部分结语 前言 图片上传也基本是一个项目的必备功能了,所以今天和大家分享一下我最近在使用若依前后端分离版本时,如何实现图片上传…...

vue3 excel 导出功能
1.安装 xlsx 库 npm install xlsx2.创建导出函数 src/utils/excelUtils.js import * as XLSX from xlsx;const exportToExcel (fileName, datas, sheetNames) > {// 创建工作簿const wb XLSX.utils.book_new()for (let i 0; i < datas.length; i) {let data datas…...
python 相关框架事务开启方式
前言 对于框架而言,各式API接口少不了伴随着事务的场景,下面就列举常用框架的事务开启方法 一、Django import traceback from django.db import transaction from django.contrib.auth.models import User try:with transaction.atomic(): # 在with…...

vue使用ElementUI
1.安装 npm i element-ui -S 2.引入 2.1完整引入 import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue;Vue.use(ElementUI); 2.2按需引入 说明:为了输入时候有提示,建…...

Python做一个绘图系统3:从文本文件导入数据并绘图
文章目录 导入数据文件对话框修改绘图逻辑源代码 Python绘图系统系列:将matplotlib嵌入到tkinter 简单的绘图系统 导入数据 单纯从作图的角度来说,更多情况是已经有了一组数据,然后需要将其绘制。这组数据可能是txt格式的,也可能…...
flutter开发实战-获取Widget的大小及位置
flutter开发实战-获取Widget的大小及位置 最近开发过程中需要获取Widget的大小及位置,这时候就需要使用到了GlobalKey了和WidgetsBinding.instance.addPostFrameCallback了 一、addPostFrameCallback 该函数的作用: flutter中的界面组件Widget每一帧…...

软件测试工程师面试如何描述自动化测试是怎么实现的?
软件测试工程师面试的时候,但凡简历中有透露一点点自己会自动化测试的技能点的描述,都会被面试官问,那你结合你的测试项目说说自动化测试是怎么实现的?一到这里,很多网友,包括我的学生,也都一脸…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...