当前位置: 首页 > news >正文

第七讲---贪心(上课)

在这里插入图片描述

1.股票买卖

在这里插入图片描述

在这里插入图片描述
一、贪心
在这里插入图片描述

在这里插入图片描述
考虑一种方案,在每次上升前一天购入股票,并在上升后的当天卖出的方案

if (w[i] > w[i - 1])res += w[i] - w[i - 1];

接下来证明该贪心思路得出的方案即是最优解
(1)证明贪心解 ≥ 最优解:
由于贪心解都是取区间长度为 1 的解,因此假设存在于最优解中的某个区间 [i,j] 的长度 >1

那么会出现一下三种情况:
在这里插入图片描述

对应三种情形:最优解选取的区间最终点位于上方、下方、相等。

对于情形一:显然 最优解 < 贪心解
对于情形二:显然 最优解 <贪心解
对于情形三:毫无疑问,这就是存在于贪心解中的情形,因此 贪心解 = 最优解
得证

(2)证明贪心解 ≤最优解:
这部分无需证明,因为贪心解即是合法解,所以他的方案必定大于等于最优解

#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int n;
int w[N];int main() {scanf("%d", &n);for (int i = 1; i <= n; ++i) scanf("%d", &w[i]);int res = 0;for (int i = 2; i <= n + 1; ++i) {if (w[i] - w[i - 1] > 0) res += w[i] - w[i - 1];}printf("%d\n", res);return 0;
}

二、闫氏DP分析法
在这里插入图片描述
具体的状态机模型分析如下图:
在这里插入图片描述
一共只2有种状态:

1. 当前处于未持股状态0

对应可以进行的转换:
0->0 (不买入,继续观望,那么就什么都不发生)
0->1 (买入股票,那么收益就要减去当前市场的股票价格)

2. 当前处于持股状态1

对应可以进行的转换:
1->1 (不卖出,继续观望,那么就什么都不发生)
1->0 (卖出股票,那么收益就要加上当前市场的股票价格)

#include <iostream>
using namespace std;
const int N = 1e5 + 10, INF = 0x3f3f3f3f;
int n;
int w[N];
int f[N][2];int main() {scanf("%d", &n);for (int i = 1; i <= n; ++i) scanf("%d", &w[i]);f[0][1] = -INF;for (int i = 1; i <= n; ++i) {f[i][0] = max(f[i - 1][0], f[i - 1][1] + w[i]);f[i][1] = max(f[i - 1][1], f[i - 1][0] - w[i]);}printf("%d\n", f[n][0]);return 0;
}

2.货舱选址

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
int a[N];
int main () {scanf ("%d",&n);for (int i = 1;i <= n;i++) scanf ("%d",&a[i]);sort (a + 1,a + 1 + n);int ans = 0;for (int i = 1,j = n;i <= j;i++,j--) ans += a[j] - a[i];printf ("%d\n",ans);return 0;
}

3.糖果传递

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

第七讲---贪心(上课)

1.股票买卖 一、贪心 考虑一种方案&#xff0c;在每次上升的前一天购入股票&#xff0c;并在上升后的当天卖出的方案 if (w[i] > w[i - 1])res w[i] - w[i - 1];接下来证明该贪心思路得出的方案即是最优解。 &#xff08;1&#xff09;证明贪心解 ≥ 最优解&#xff1a; …...

计算机如何思考与图灵完备

图灵完备是针对一套数据操作规则而言的概念,数据操作规则可以是一门编程语言,也可以是计算机实现里面的指令集,比如C/C++是图图灵完备的,通用CPU也是图灵完备的,但是GPU却不一定是图灵完备的。说白了图灵完备定义了一套规则,当这套规则可以实现图灵迹模型里的全部功能时,…...

惠普LaserJet M1005 MFP报错b2

故障现象: 惠普LaserJet M1005 MFP开机后直接报b2错误; 检测维修: 故障大意是:机器的硬件可能出现点突变,此问题建议联系当地维修中心进行处理。...

网络协议(TCP/IP)

目录一、网络分层模型二、OSI模型三、网络传输原理四、TCP/IP1、TCP/IP 原理2、TCP 三次握手/四次挥手3、Http协议和TCP/IP的区别五、HTTP原理六、HTTPS原理七、CDN原理一、网络分层模型 互联网的本质就是一系列的网络协议&#xff0c;最早由ISO国际组织定义为7层网络参考模型…...

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书A模块基础设施设置/安全加固&#xff08;200分&#xff09;A-1&#xff1a;登录安全加固&#xff08;Windows, Linux&#…...

6、流程控制

目录一、if二、switch三、for四、break与continue五、goto与Label一、if if使用&#xff1a;逻辑表达式成立&#xff0c;就会执行{}里的内容&#xff1b;逻辑表达式不需要加() if 5 > 9 {fmt.Println("5>9") }if句子中允许包含1个(仅1个)分号&#xff1a;在分…...

Linux中最基本常见命令总结

❤❤&#x1f49b;&#x1f49b;&#x1f49a;&#x1f49a;&#x1f499;&#x1f499;&#x1f49c;&#x1f49c;您的认可是对我最大的帮助&#x1f49c;&#x1f49c;&#x1f499;&#x1f499;&#x1f49a;&#x1f49a;&#x1f49b;&#x1f49b;❤❤ &#x1f90e;&…...

Python学习-----模块2.0(常用模块之时间模块-->time)

目录 前言&#xff1a; time简介 导入模块 1.时间戳 2.时间元组 &#xff08;1&#xff09;把时间戳转换为元组形式 &#xff08;2&#xff09;元组转换为时间戳输出 &#xff08;3&#xff09;把元组转换为格式化时间 &#xff08;4&#xff09;把时间戳转换为格式化时间…...

XXL-JOB分布式任务调度框架(二)-策略详解

文章目录1.引言2.任务详解2.1.执行器2.2.基础配置3.路由策略(第一个)-案例4.路由策略(最后一个)-案例5.轮询策略-案例6.随机选取7.轮询选取8.一致性hash9.最不经常使用 (LFU)10.最近最久未使用&#xff08;LRU&#xff09;11.故障转移12.忙碌转移13.分片广播任务14.父子任务15.…...

JAVA练习54-最小栈

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、题目-最小栈 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 2月18日练习内容…...

Redis-哨兵模式以及集群

在开始这部分内容之前需要先说一下复制功能&#xff0c;因为这是Redis实现主从数据同步的实现方式。复制功能如果存在两台服务器的话&#xff0c;我们可以使用redis的复制功能&#xff0c;让一台服务器去同步另一台服务器的数据。现在我启动了两台redis服务器&#xff0c;一个端…...

过滤器和监听器

1、过滤器Filter 作用是防止SQL注入、参数过滤、防止页面攻击、空参数矫正、Token校验、Session验证、点击率统计等等&#xff1b; 使用Filter的步骤 新建类&#xff0c;实现Filter抽象类&#xff1b;重写init、doFilter、destroy方法&#xff1b;在SpringBoot入口中添加注解…...

Acwing 第 91 场周赛

Powered by:NEFU AB-IN B站直播录像&#xff01; Link 文章目录Acwing 第 91 场周赛A AcWing 4861. 构造数列题意思路代码B AcWing 4862. 浇花题意思路代码C AcWing 4863. 构造新矩阵题意思路代码Acwing 第 91 场周赛 A AcWing 4861. 构造数列 题意 略 思路 将每个数的每一位…...

JavaEE|套接字编程之UDP数据报

文章目录一、DatagramSocket API构造方法常用方法二、DatagramPacket API构造方法常用方法E1:回显服务器的实现E2:带有业务逻辑的请求发送一、DatagramSocket API 在操作系统中&#xff0c;把socket对象当成了一个文件处理。等价于是文件描述符表上的一项。 普通的文件&#xf…...

如何使用Python创建一个自定义视频播放器

目录 1、安装vlc的64位版本。 2、安装python的vlc模块。 3、编写如下代码&#xff0c;包含了播放&#xff0c;暂停&#xff0c;停止、音量控制功能。 4、来看一看运行结果。 5、如果遇到播放不了的问题&#xff0c;解决方式如下&#xff1a; 这个例子使用VLC作为视频播放器…...

Elasticsearch进行优化-使用索引拆分(Split)和索引收缩(shrink )

一、索引拆分和收缩的场景 在Elasticsearch集群部署的初期我们可能评估不到位&#xff0c;导致分配的主分片数量太少&#xff0c;单分片的数据量太大&#xff0c;导致搜索时性能下降&#xff0c;这时我们可以使用Elasticsearch提供的Split功能对当前的分片进行拆分&#xff0c…...

数论 —— 高斯记号(Gauss mark)

定义 数学上&#xff0c;高斯记号&#xff08;Gauss mark&#xff09;是指对取整符号和取小符号的统称&#xff0c;用于数论等领域。 设 x∈Rx \in \textbf{R}x∈R&#xff0c;用 [x][x][x] 表示不超过 xxx 的最大整数。也可记作 [x][x][x]。设 x∈Rx \in \textbf{R}x∈R&…...

【随笔】程序员眼中的 CPU,“没有灵魂的躯体”

引言 先引用一段比较有意思的论述&#xff1a; 现实中每个人是由两部分构成&#xff0c;灵魂和躯体&#xff0c;灵魂依附于躯体游走于世间&#xff0c;现实中我们面对的每个人其实面对的是其灵魂而非肉体&#xff0c;肉体不过是表象而已。 灵魂本性乃一恶物&#xff0c;寄生于…...

算法的时间复杂度

算法在编写成可执行程序后&#xff0c;运行时需要消耗时间资源和空间&#xff08;内存&#xff09;资源&#xff0c;因此衡量一个算法的好坏&#xff0c;一般是从时间和空间两个维度来衡量的。 时间复杂度主要衡量一个算法运行的快慢&#xff0c;而空间复杂度主要衡量一个算法运…...

华为OD机试 - 叠放书籍(Python) | 机试题算法思路 【2023】

最近更新的博客 华为OD机试 - 寻找路径 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 五键键盘 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - IPv4 地址转换成整数 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 对称美学 | 备考思路,刷题要点,答疑 …...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...