当前位置: 首页 > news >正文

智能优化算法——哈里鹰算法(Matlab实现)

目录

1 算法简介

2 算法数学模型

2.1.全局探索阶段

2.2 过渡阶段

2.3.局部开采阶段

3 求解步骤与程序框图

3.1 步骤

3.2 程序框图

4 matlab代码及结果

4.1 代码

4.2 结果


1 算法简介

哈里斯鹰算法(Harris Hawks Optimization,HHO),是由Ali Asghar Heidari和Seyedali Mrjaili于2019年提出的一种新型仿生智能优化算法。该算法模仿哈里斯鹰捕食特点,结合Levy飞行(Levy Flights)实现对复杂多维问题求解。研究表明该新型算法具有良好的性能。在HHO中,哈里斯鹰是候选解,猎物随迭代逼近最优解.HHO算法包括两个阶段:全局探索阶段、局部开采阶段.

2 算法数学模型

2.1.全局探索阶段

在这一阶段中,哈里斯鹰处于等待状态。仔细检查和监控搜索空间[b , ub]以发现猎物。根据两种策略在随机的地方寻找猎物,迭代时以概率q进行位置更新。数学表达式如下:

式中,

编辑分别为哈里斯鹰第t+1次和第t次迭代时的位置,Xrabbit,t表示猎物第t次迭代时的位置,q和r1,r2,r3,r4是区间(0,1)内的随机数字,lb是搜索空间的下界,ub是搜索空间的上界,Xrand,t表示第t次迭代时哈里斯鹰的随机位置,Xm,t表示第t次迭代时哈里斯鹰的平均位置,公式如下:

2.2 过渡阶段

该阶段用于保持探索和开采之间适当的平衡。HHO通过猎物的能量方程实现从探索到开采的过渡。

式中,E表示猎物逃跑的能量,

是猎物能量的初始状态,公式为E0= 2*rand - 1,rand是(0,1)之间的随机数字,T为最大迭代次数,t为当前迭代次数.当E≥1时,哈里斯鹰算法将执行全局探索;否则,HHO算法进入局部开采。

2.3.局部开采阶段

根据猎物的逃跑行为和哈里斯鹰的追逐策略,HHO算法提出了四种可能的策略来模拟攻击行为.用N表示猎物成功逃脱的概率。

(1)软围攻.当E≥0.5,A≥0.5时,猎物有足够的能量且以跳跃的方式逃脱围捕,而哈里斯鹰会逐渐消耗猎物的能量,然后选择最佳的位置突袭俯冲逮捕猎物.更新位置的方程如下:

式中,Xt是迭代时猎物与哈里斯鹰的位置之差,J=2(1-r5)表示猎物逃跑过程中的随机跳跃,r5是介于0到1之间的随机数字.

(2)硬围攻.当E<0.5,入≥0.5时,猎物筋疲力尽,哈里斯鹰选择迅速突袭.位置更新如下:

(3)累速俯冲式软围攻.当E>0.5,入<0.5时,猎物有足够的能量E逃跑,哈里斯鹰在突袭之前会建立一个软围攻.为了模拟猎物的逃跑模式和跳跃动作,将levy函数LF集成在HHO算法中.更新位置的策略为:

式中,D为问题维度,S为D维随机行向量.

(4)累速俯冲式硬围攻.当E<0.5,入<0.5时,猎物能量E低,哈里斯鹰在突袭前构建硬围攻捕捉猎物,位置更新如:

Levy飞行函数公式如下:

式中,u、v是(0,1)之间的随机数,β取常值1.5。

HHO算法用猎物能量E和因子入调节哈里斯鹰和猎物(兔子)之间的四种围捕机制,来实现优化求解问题.

3 求解步骤与程序框图

3.1 步骤

HHO算法的规则描述如下:
1)每次迭代前,判断是否越界并调整,更新猎物位置与适应度值;
2)在搜索阶段,哈里斯鹰拥有两种不同搜索方式,分别针对发现和未发现猎物;
3)野兔的逃逸能量会随着迭代次数增加而自适应减小;
4)当野兔能量降低到某一阈值,将被哈里斯鹰群发现,狩猎从搜索阶段转为围捕突袭阶段;
5)每一次突袭前,兔子都有一定的概率从包围中逃脱;
6)针对兔子的体力,以及是否逃脱包围圈,哈里斯鹰有四种不同的围捕策略;
7)每次围捕最终兔子将会捕获,每次迭代会产生一个新的猎物,该位置将由新一代种群中适应度值最优者占据。
实现步骤
Step1:初始化种群:包括搜索空间的上限和下限,算法的最大迭代次数T。随机初始化种群位置.
Step2:根据适应度函数计算每个个体的适应度值,保存种群最优个体.
Step3:更新猎物逃逸能量E.
Step4:比较E的大小,按位置更新公式或四种策略追捕猎物,更新位置.Step5:对每个个体,计算适应度,更新种群最优的适应度值.
Step6:判断搜索到的结果是否满足停止条件(达到最大迭代次数或满足精度要求),若满足停止条件则输出最优值,否则转到Step3继续运行直到满足条件为止.

3.2 程序框图

4 matlab代码及结果

4.1 代码


%% 智能优化算法——哈里鹰算法(Matlab实现)
clear
close all
clcSearchAgents_no = 30 ; % 种群规模
dim = 10 ; % 粒子维度
Max_iter = 1000 ; % 迭代次数
ub = 5 ;
lb = -5 ;
%% 初始化猎物位置和逃逸能量
Rabbit_Location=zeros(1,dim);
Rabbit_Energy=inf;%% 初始化种群的位置
Positions= lb + rand(SearchAgents_no,dim).*(ub-lb) ;Convergence_curve = zeros(Max_iter,1);%% 开始循环
for t=1:Max_iterfor i=1:size(Positions,1)% Check boundriesFU=Positions(i,:)>ub;FL=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;% fitness of locationsfitness=sum(Positions(i,:).^2);% Update the location of Rabbitif fitness<Rabbit_EnergyRabbit_Energy=fitness;Rabbit_Location=Positions(i,:);endendE1=2*(1-(t/Max_iter)); % factor to show the decreaing energy of rabbit%% Update the location of Harris' hawksfor i=1:size(Positions,1)E0=2*rand()-1; %-1<E0<1Escaping_Energy=E1*(E0);  % escaping energy of rabbitif abs(Escaping_Energy)>=1%% Exploration:% Harris' hawks perch randomly based on 2 strategy:q=rand();rand_Hawk_index = floor(SearchAgents_no*rand()+1);X_rand = Positions(rand_Hawk_index, :);if q<0.5% perch based on other family membersPositions(i,:)=X_rand-rand()*abs(X_rand-2*rand()*Positions(i,:));elseif q>=0.5% perch on a random tall tree (random site inside group's home range)Positions(i,:)=(Rabbit_Location(1,:)-mean(Positions))-rand()*((ub-lb)*rand+lb);endelseif abs(Escaping_Energy)<1%% Exploitation:% Attacking the rabbit using 4 strategies regarding the behavior of the rabbit%% phase 1: surprise pounce (seven kills)% surprise pounce (seven kills): multiple, short rapid dives by different hawksr=rand(); % probablity of each eventif r>=0.5 && abs(Escaping_Energy)<0.5 % Hard besiegePositions(i,:)=(Rabbit_Location)-Escaping_Energy*abs(Rabbit_Location-Positions(i,:));endif r>=0.5 && abs(Escaping_Energy)>=0.5  % Soft besiegeJump_strength=2*(1-rand()); % random jump strength of the rabbitPositions(i,:)=(Rabbit_Location-Positions(i,:))-Escaping_Energy*abs(Jump_strength*Rabbit_Location-Positions(i,:));end%% phase 2: performing team rapid dives (leapfrog movements)if r<0.5 && abs(Escaping_Energy)>=0.5% Soft besiege % rabbit try to escape by many zigzag deceptive motionsJump_strength=2*(1-rand());X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-Positions(i,:));if sum(X1.^2)<sum(Positions(i,:).^2) % improved movePositions(i,:)=X1;else % hawks perform levy-based short rapid dives around the rabbit%Levy flightbeta=1.5;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,dim)*sigma;v=randn(1,dim);step=u./abs(v).^(1/beta);o1=0.01*step;X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-Positions(i,:))+rand(1,dim).*o1;if (sum(X2.^2)<sum(Positions(i,:).^2))% improved movePositions(i,:)=X2;endendendif r<0.5 && abs(Escaping_Energy)<0.5% Hard besiege % rabbit try to escape by many zigzag deceptive motions% hawks try to decrease their average location with the rabbitJump_strength=2*(1-rand());X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(Positions));if sum(X1.^2)<sum(Positions(i,:).^2) % improved movePositions(i,:)=X1;else % Perform levy-based short rapid dives around the rabbit%Levy flightbeta=1.5;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,dim)*sigma;v=randn(1,dim);step=u./abs(v).^(1/beta);o2=0.01*step;X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(Positions))+rand(1,dim).*o2;if (sum(X2.^2)<sum(Positions(i,:).^2))% improved movePositions(i,:)=X2;endendend%%endendConvergence_curve(t)=Rabbit_Energy;% Print the progress every 100 iterationsif mod(t,50)==0display(['At iteration ', num2str(t), ' the best fitness is ', num2str(Rabbit_Energy)]);end
end
figure('unit','normalize','Position',[0.3,0.35,0.4,0.35],'color',[1 1 1],'toolbar','none')
subplot(1,2,1);
x = -5:0.1:5;y=x;
L=length(x);
f=zeros(L,L);
for i=1:Lfor j=1:Lf(i,j) = x(i)^2+y(j)^2;end
end
surfc(x,y,f,'LineStyle','none');
xlabel('x_1');
ylabel('x_2');
zlabel('F')
title('Objective space')subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',1.5)
title('Convergence_curve')
xlabel('Iteration');
ylabel('Best score obtained so far');axis tight
grid on
box on
legend('HHO')
display(['The best solution obtained by HHO is : ', num2str(Rabbit_Location)]);
display(['The best optimal value of the objective funciton found by HHO is : ', num2str(Rabbit_Energy)]);

4.2 结果

相关文章:

智能优化算法——哈里鹰算法(Matlab实现)

目录 1 算法简介 2 算法数学模型 2.1.全局探索阶段 2.2 过渡阶段 2.3.局部开采阶段 3 求解步骤与程序框图 3.1 步骤 3.2 程序框图 4 matlab代码及结果 4.1 代码 4.2 结果 1 算法简介 哈里斯鹰算法(Harris Hawks Optimization&#xff0c;HHO)&#xff0c;是由Ali As…...

【深度学习】多粒度、多尺度、多源融合和多模态融合的区别

多粒度&#xff08;multiresolution&#xff09;和多尺度&#xff08;multiscale&#xff09; 多粒度&#xff08;multiresolution&#xff09;和多尺度&#xff08;multiscale&#xff09;都是指在不同的空间或时间尺度上对数据或信号进行分析和处理。其中 多尺度&#xff1…...

利用SCCM进行横向移动

01SCCM介绍 SCCM全名为System Center Configuration Manager&#xff0c;从版本1910开始&#xff0c;微软官方将其从Microsoft System Center产品移除&#xff0c;重新命名为Microsoft Endpoint Configuration Manager&#xff08;ConfigMgr&#xff09;&#xff0c;其可帮助 …...

Nginx 负载均衡

Nginx 负载均衡 负载均衡由反向代理来实现的 其中反向代理分为七层代理和四层代理&#xff0c;一般常用的是七层代理&#xff0c;接下来分别介绍一些 NGINX 七层代理 七层是最常用的反向代理方式&#xff0c;只能配置在Nginx配置文件的http模块。 配置方法名称&#xff1a;…...

Java课题笔记~ ServletConfig

概念&#xff1a;代表整个web应用&#xff0c;可以和程序的容器(服务器)来通信 <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://java.sun.com/xml/ns/javaee"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instan…...

oracle的异常处理

oracle提供了预定义例外、非预定义例外和自定义例外三种类型。其中&#xff1a; l预定义例外用于处理常见的oracle错误&#xff1b; l非预定义例外用于处理预定义所不能处理的oracle错误&#xff1b; l自定义例外处理与oracle错误无关的其他情况。 Oracle代码编写过程中&am…...

【MySQL】MySQL数据类型

文章目录 一、数据类型的分类二、tinyint类型2.1 创建有符号数值2.2 创建无符号数值 三、bit类型三、浮点类型3.1 float3.2 decimal类型 四、字符串类型4.1 char类型4.2 varchar类型 五、日期和时间类型六、枚举和集合类型6.1 enum的枚举值和set的位图结构6.2 查询集合find_in_…...

【数据结构与算法】十大经典排序算法-希尔排序

&#x1f31f;个人博客&#xff1a;www.hellocode.top &#x1f3f0;Java知识导航&#xff1a;Java-Navigate &#x1f525;CSDN&#xff1a;HelloCode. &#x1f31e;知乎&#xff1a;HelloCode &#x1f334;掘金&#xff1a;HelloCode ⚡如有问题&#xff0c;欢迎指正&#…...

docker 常用命令

1. 搜索并下载镜像 docker search bundlefusion # 搜索docker pull jhljx/bundlefusion # 将远程仓库文件下载到本地2. 用镜像创建容器 docker run -it --namebundlefusion colec777/bundlefusion-cu11.4-cudagl:v8 /bin/bash # 创建并运行 exit # 退出终端 sudo docker cont…...

uniapp微信小程序中打开腾讯地图获取用户位置信息

实现的效果 第一步&#xff1a;首先登录微信公众平台 , 需要用到AppID 第二步&#xff1a; 注册登录腾讯位置服务 注册需要手机号和邮箱确认&#xff0c;然后创建应用 创建后点击添加key 添加后会生成key&#xff0c;后面会用到这个key 第三步&#xff1a; 登录微信公众平台&a…...

嵌入式领域:人才供需失衡,发展潜力巨大

嵌入式技术正快速发展&#xff0c;ARM处理器、嵌入式操作系统、LINUX等技术助力嵌入式领域崛起。然而&#xff0c;行业新颖且门槛高&#xff0c;缺乏专业指导。因此&#xff0c;嵌入式人才稀缺&#xff0c;身价水涨船高。 未来几年&#xff0c;嵌入式系统将在信息化、智能化、…...

python 书籍

python高手进阶之路 10册 QQ:417398600...

Debian纯净系统安装php常用扩展和程序

适用于 php-fpm debian容器 mysql扩展 docker-php-ext-install pdo_mysql docker-php-ext-install mysqliredis扩展 pecl install redis docker-php-ext-enable redis# pecl无法装就&#xff1a; docker-php-source extract # 创建并初始化 /usr/src/php目录&#xff08;扩展…...

vue+element中如何设置单个el-date-picker开始时间和结束时间关联

功能&#xff1a;选了开始时间&#xff0c;则结束时间只能选择开始时间之后的&#xff1b;选了结束时间&#xff0c;则开始时间只能选择结束时间之前的 重点是picker-options属性 图示&#xff1a; 代码展示: // body 内部<el-form-item><el-date-pickerv-model&qu…...

二次封装ajax和axios

ajax app.config.globalProperties.$http function(url, method, data, async, fun) {$.ajax({url: baseUrl url, //请求地址type: method, //请求方式dataType: json, //数据类型contentType: "application/json",xhrFields: { //跨域设置withCredentials: t…...

Android进阶之SeekBar动态显示进度

SeekBar 在开发中并不陌生,默认的SeekBar是不显示进度的,当然用吐司或者文案在旁边实时显示也是可以的,那能不能移动的时候才显示&#xff0c;默认不显示呢,当然网上花哨的三方工具类太多了&#xff0c;但是我只是单纯的想在SeekBar的基础上去添加一个可以跟随移动显示的气泡而…...

企业计算机服务器中了locked勒索病毒怎么办,如何预防勒索病毒攻击

计算机服务器是企业的关键信息基础设备&#xff0c;随着计算机技术的不断发展&#xff0c;企业的计算机服务器也成为了众多勒索者的攻击目标&#xff0c;勒索病毒成为当下计算机服务器的主要攻击目标。近期&#xff0c;我们收到很多企业的求助&#xff0c;企业的服务器被locked…...

大麦订单截图 一键生成订单截图

新版付款图样式展示 这个样式图就是在大麦刚付款完的一个订单截图&#xff0c;它的状态是等待卖家发货 下滑下载源码 下载源码&#xff1a;https://pan.baidu.com/s/16lN3gvRIZm7pqhvVMYYecQ?pwd6zw3...

LLaMA长度外推高性价比trick:线性插值法及相关改进源码阅读及相关记录

前言 最近&#xff0c;开源了可商用的llama2&#xff0c;支持长度相比llama1的1024&#xff0c;拓展到了4096长度&#xff0c;然而&#xff0c;相比GPT-4、Claude-2等支持的长度&#xff0c;llama的长度外推显得尤为重要&#xff0c;本文记录了三种网络开源的RoPE改进方式及相…...

中国信息安全测评中心CISP家族认证一览

随着国家对网络安全的重视&#xff0c;中国信息安全测评中心根据国家政策、未来趋势、重点内容陆续增添了很多CISP细分认证。 今日份详细介绍&#xff0c;部分CISP及其子品牌相关认证内容&#xff0c;一定要收藏哟&#xff01; 校园版CISP NISP国家信息安全水平考试&#xff…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...