当前位置: 首页 > news >正文

STM32--GPIO

文章目录

  • GPIO简介
  • GPIO的基本结构
  • GPIO位结构
  • GPIO模式
  • LED和蜂鸣器
  • LED闪烁工程及程序原码
    • 代码:
  • 蜂鸣器工程和程序原码
    • 代码
  • 传感器
  • 光敏传感器控制蜂鸣器工程
    • 代码

GPIO简介

GPIO(General Purpose Input Output)是通用输入/输出口的简称。它是一种可以通过软件控制的端口扩展器,常见于各种嵌入式系统和单片机中。GPIO具有以下特点和优势:

  1. 低功耗:GPIO使用的电流较小,能够在嵌入式系统中实现低功耗的控制和监视功能。
  2. 小封装:GPIO芯片通常采用小封装的设计,占据较小的空间,适用于空间有限的应用场景。
  3. 低成本:GPIO芯片的制造成本相对较低,可以降低整体系统的成本。
  4. 布线简单:GPIO的接口设计一般比较简单,连接和布线也相对容易,方便用户进行外部设备的控制和数据采集。

通过使用GPIO,我们可以将外部设备与嵌入式系统或单片机连接起来,实现与外部设备的通信、控制和数据采集功能。例如,通过配置GPIO的输入输出状态,可以实现控制LED灯的亮灭、读取按键的状态、控制电机的转动等。GPIO的灵活性使得它在各个领域中得到广泛的应用,如物联网、工业自动化、智能家居等。

GPIO的基本结构

GPIO的基本结构通常包括以下几个主要组成部分:

  1. 输入/输出引脚(IO Pins)GPIO芯片上的引脚用于连接外部设备或其他电路。这些引脚可以被配置为输入或输出模式,以实现对外部信号的读取或控制。

  2. 控制逻辑(Control Logic)控制逻辑是用来配置和控制GPIO引脚工作模式和行为的电路。它接收来自外部或内部的控制信号,并根据相应的配置将其传递给相应的GPIO引脚。

  3. 寄存器(Registers)寄存器是用来存储GPIO的配置和状态信息的特殊内存单元。通过读写寄存器中的特定位或字段,可以配置引脚的工作模式、使能或禁用某些功能,以及监控引脚的状态。

  4. 数据缓冲器(Data Buffer)数据缓冲器用于在GPIO引脚和外部设备之间传输数据。根据引脚的配置,数据缓冲器可以将输出数据驱动到外部设备,或者从外部设备读取输入数据。

  5. 驱动器(Drive)驱动器用于增强信号在引脚与寄存器之间的传输。对于一些信号来说,传输信号比较弱,通过配置驱动器,使之增强达到驱动效果。

在这里插入图片描述
这里的GPIO连接着APB2总线;软件的编程程序将会从这里输入或输出;

下图为STM32总电路图

GPIO位结构

对于STM32每个端口位来说,每个I/O端口位可以自由编程,然而必须按照32位字访问I/O端口寄存器(不允许半字或字节访问)。

下图是I/O端口位的基本结构
在这里插入图片描述
整体分为寄存器,驱动器和某个I/O引脚
上半部分是输入部分,下半部分是输出部分;

先从I/O引脚说起,这里的两个保护二极管是对输入电压的限制;上边接的是3.3V的VDD,下边接的是0V的VSS;如果接入的电压超过3.3V,那么输入的电压产生的电流将会流入VDD,避免过高的电压对电路产生伤害;如果接入的电压小于0V(相对VSS),那么电流就会从VSS的正极流向I/O引脚,从而保护电路;
所以,保护二极管将输入电压限制在了0-3.3V之间了;

接着看输入驱动器的连接电阻的部分,这里连接的是上拉电阻和下拉电阻,上拉电阻连接VDD,下拉电阻连接VSS,因此可以通过程序来控制;
如果上面导通,下面断开,就是上拉输入模式;如果下面导通,上面断开,就是下拉输入模式;如果两个都断开,就是浮空输入模式
这个上拉和下拉目的是为了提供一个默认的输入电平;对于数字信号来说,只识别高电平和低电平;倘若输入引脚没有接上外设,就不知道此时是高电平还是低电平,实际此时处于浮空输入状态吗,那么此时很容易受到外界的干扰,接上了这两个电阻后,当接上是上拉电阻,引脚悬空时可由上拉电阻来保持高电平,所以上拉默认为高电平输入模式;下拉就反过来,保持低电平状态,下拉默认为低电平输入模式,这样就能防止外界的干扰,使浮空时状态更加稳定;
还有这里是弱上拉和弱下拉,目的是为了不影响正常操作;

顺着电路看到TTL,施密特触发器,作用是对电压进行整形
执行逻辑是输入电压高于某一阈值,那么将会瞬间变为高电平;输入电压低于某一阈值,那么将会瞬间变为低电平
由于输入电压是从外界进来的,输入的数字信号不会保持一定程度的高低电平,输入信号会有所波动,所以有这个触发器就能让这些波动变为高低电平;

然后看到输入数据寄存器,通过施密特触发器处理的数字信号将会进入到寄存器,我们用程序就可以读取到寄存器中的数据

看到上方的模拟输入和复用功能输入,这里是连接片上外设的,模拟输入是ADC模拟数字信号,接在施密特触发器前,可以处理信号;复用功能输入接收的是数字量,所以接在施密特触发器之后;

接着看输出部分,数字信号可以由输出寄存器或片上外设控制;两种输出模式都会通过数据选择器接到输出控制部分;如果是输出寄存器,那么通过普通的I/O口就能进行输出;

最左边的位设置/清除寄存器,用来单独操作输出寄存器的某一位,而不影响其他位。因为这个输出寄存器有16位,且这个寄存器只能整体读写,所以通过这个设置/清除寄存器,能够设置某一位为1或0,剩下不需要的位将它们置为0/1即可;接着就会对输出寄存器对应位置的位进行传输;直接一步到位;
位设置就是将某一位设置为1,位清除就是将某一位设置为0;

接着看到两个MOS管,它是一种电子开关,通过信号来控制开关的导通和关闭,开关负责将接口接到VSS或VDD;
这里有两种模式,第一种是推挽输出模式,这个模式P-MOS和N-MOS均有效。数据寄存器输出1时那么上管导通下管关闭,输出直接接到VDD,保持高电平;数据为0时,那么上管关闭下管导通,输出直接接到VSS,保持低电平;这种模式高低电平均有较强的驱动能力,所以推挽输出也叫强输出模式
第二种是开漏输出模式,这个模式只有N-MOS有效;数据寄存器输出1时,下管断开,这时相当于输出断开,也就是高阻模式,无效;数据寄存器输出0时,下管导通,输出直接接到VSS,也就是输出低电平;也就是说,这种模式高电平没有驱动能力,低电平才有驱动能力
关闭就说明两个MOS管都关闭,输出无效;

GPIO模式

根据数据手册中列出的每个I/O端口的特定硬件特征, GPIO端口的每个位可以由软件分别配置成多种模式
在这里插入图片描述
下面给出各模式配置的电路图:

浮空/上拉/下拉输入
在这里插入图片描述

模拟输入
在这里插入图片描述

推挽/开漏输出
在这里插入图片描述

复用推挽/开漏输出
在这里插入图片描述

LED和蜂鸣器

LED:发光二极管,正向通电点亮,反向通电不亮
有源蜂鸣器:内部自带振荡源,将正负极接上直流电压即可持续发声,频率固定,(我们所使用的是有源蜂鸣器)
无源蜂鸣器:内部不带振荡源,需要控制器提供振荡脉冲才可发声,调整提供振荡脉冲的频率,可发出不同频率的声音
在这里插入图片描述
在这里插入图片描述
这是LED蜂鸣器连接STM32的电路图。

第一个是由电源提供连接二极管的正极,二极管负极连接STM32,通过STM32的低电平触发,二极管正向导通,STM32高电平二极管两端都为3.3V,无法使二极管导通;连接电阻是控制电流大小,还有可以调节二极管的亮度。
第三个是让二极管正极接在STM32的PA0口上,负极接地;那么只有在STM32输出高电平时,发光二极管才会正向导通;
上面介绍中,在推挽输出模式下,高低电平均有较强的驱动能力,所以两种解法均可。一般情况下,我们习惯用第一种方法,因为单片机和芯片上使用的是高电平弱驱动,低电平强驱动的规则,避免高低电平混乱

第二个是蜂鸣器电路,用到三极管驱动方案;
对于功率比较大的,直接用I/O口连接的话STM32负担较大,所以采用三极管的驱动方案;三极管左边是基极,带箭头是发射极,下面是集电极;左边的基极给低电平,三极管就会导通,通过3.3V和GND的连接,三接管就导通;基极给出高电平,三接管就会关闭,蜂鸣器无电流通过;
第四个图也是蜂鸣器电路,但操作方式与第二个正好相反;
一样的,三极管左边是基极,带箭头是发射极,下面是集电极;当基极为高电平时,三极管导通,蜂鸣器有电流;低电平时,三极管关闭,蜂鸣器无电流;
三极管的导通需要基极和发射极保持一定的电压;

LED闪烁工程及程序原码

我们要在面包板上连接好我们的电路:
在这里插入图片描述
之后就可以编写程序了。
我们首先复制工程模板,创建一个工程文件夹;然后在mian.c上操作即可;
首先需要对GPIO的I/O接口进行一定的配置;

● 输出缓冲器被激活
─ 开漏模式:输出寄存器上的’0’激活N-MOS,而输出寄存器上的’1’将端口置于高阻状态(PMOS从不被激活)。
─ 推挽模式:输出寄存器上的’0’激活N-MOS,而输出寄存器上的’1’将激活P-MOS。
● 施密特触发输入被激活
● 弱上拉和下拉电阻被禁止
● 出现在I/O脚上的数据在每个APB2时钟被采样到输入数据寄存器
● 在开漏模式时,对输入数据寄存器的读访问可得到I/O状态
● 在推挽式模式时,对输出数据寄存器的读访问得到最后一次写的值。

我们在STM32的总线路可以看出需要设置APB2外设时钟开关;
当外设时钟没有启用时,软件不能读出外设寄存器的数值,返回的数值始终是0x0。
这里我们输入RCC_APB2PeriphClockCmd函数,输入后选中该函数,点击右键,
在这里插入图片描述
选中定义,
在这里插入图片描述
这里我们可以看清这个函数的参数使用和函数的功能;
参数这里选择RCC_APB2Periph_GPIOA,ENABLE

接着就对GPIO进行模式选择和I/O端位口的选择;
在库函数中,使用的是结构体,我们需要对结构体给出一个变量,
GPIO_InitTypeDef GPIO_InitStructure
然后跟上面同意的道理,选中进入定义;
在这里插入图片描述

对结构体成员进行赋值,也就是模式和端口位的选择;
最后就对GPIO结构体进行初始化,这样就完成GPIO的输出配置。

代码:

delay.c

#include "stm32f10x.h"/*** @brief  微秒级延时* @param  xus 延时时长,范围:0~233015* @retval 无*/
void Delay_us(uint32_t xus)
{SysTick->LOAD = 72 * xus;				//设置定时器重装值SysTick->VAL = 0x00;					//清空当前计数值SysTick->CTRL = 0x00000005;				//设置时钟源为HCLK,启动定时器while(!(SysTick->CTRL & 0x00010000));	//等待计数到0SysTick->CTRL = 0x00000004;				//关闭定时器
}/*** @brief  毫秒级延时* @param  xms 延时时长,范围:0~4294967295* @retval 无*/
void Delay_ms(uint32_t xms)
{while(xms--){Delay_us(1000);}
}/*** @brief  秒级延时* @param  xs 延时时长,范围:0~4294967295* @retval 无*/
void Delay_s(uint32_t xs)
{while(xs--){Delay_ms(1000);}
} 

delay.h

#ifndef __DELAY_H
#define __DELAY_Hvoid Delay_us(uint32_t us);
void Delay_ms(uint32_t ms);
void Delay_s(uint32_t s);#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"int main()
{//设置APB2外设时钟开关RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//GPIO初始化的结构体 变量类型GPIO_InitTypeDef GPIO_InitStructure;//对结构体成员进行赋值GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;//推挽输出GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;//GPIO初始化GPIO_Init(GPIOA,&GPIO_InitStructure);while(1){//清除所选端口数据端口位,置0GPIO_ResetBits(GPIOA,GPIO_Pin_0);Delay_ms(100);//设置所选端口数据端口位,置1GPIO_SetBits(GPIOA,GPIO_Pin_0);Delay_ms(500);//设置或清除所选数据端位口GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_RESET);Delay_ms(500);GPIO_WriteBit(GPIOA,GPIO_Pin_0,Bit_SET);Delay_ms(500);GPIO_WriteBit(GPIOA,GPIO_Pin_0,(BitAction)0);//强制转换为1Delay_ms(500);GPIO_WriteBit(GPIOA,GPIO_Pin_0,(BitAction)1);Delay_ms(500);}
}

接着就是在while(1)循环中让PA0口在高低电平中置换;
这里可以直接设置/清除所选数据端口位函数GPIO_SetBitsGPIO_ResetBits,也可以写入用设置或清除所选数据端口位函数GPIO_WriteBit
在这里插入图片描述
在这里插入图片描述

这里的位用了枚举类型,可以运用枚举类型的定义,进行不同的切换;
在这里插入图片描述

蜂鸣器工程和程序原码

在这里插入图片描述

代码

#include "stm32f10x.h"                  // Device header
#include "Delay.h"int main()
{//设置APB2外设时钟开关RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//GPIO初始化的结构体 变量类型GPIO_InitTypeDef GPIO_InitStructure;//对结构体成员进行赋值GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin=GPIO_Pin_12;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;//GPIO初始化GPIO_Init(GPIOB,&GPIO_InitStructure);while(1){GPIO_ResetBits(GPIOB,GPIO_Pin_12);Delay_ms(100);GPIO_SetBits(GPIOB,GPIO_Pin_12);Delay_ms(100);GPIO_ResetBits(GPIOB,GPIO_Pin_12);Delay_ms(100);GPIO_SetBits(GPIOB,GPIO_Pin_12);Delay_ms(700);}
}

传感器

传感器模块:传感器元件(光敏电阻/热敏电阻/红外接收管等)的电阻会随外界模拟量的变化而变化,电阻不好观察,再通过与定值电阻分压即可得到模拟电压输出,最后通过电压比较器进行二值化即可得到数字电压输出
在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/57325896b78d4f71b3f3017e9f906078.png
这是传感器的电路图。
先看第三个电路图,N1就是可变电阻,随着光线、温度、等外界因素的变化而变化;R1是N1分压的定值电阻,R1与N1串联,定值电阻一端接VCC,N1一端接GND,这就构成简单的串联电路,C2是滤波电容,可以保证电路的稳定。它并不是电路的主要框架,看电路图可以先把它省略。AO就是我们模拟的电压输出;
该模块还支持数字输出,AO通过电压比较器的二值化(第一个图)将模拟电压转换为数字电压DO;
第二个图是可调值电阻,通过该电阻可以调节传感器的变化阈值;
第四个图也就是总的传感器模块图;DO连接着发光二极管,低电平时亮,高电平时不亮;
我们连接是转换为数字电压输出,所以AO引脚可以不接。

光敏传感器控制蜂鸣器工程

在这里插入图片描述
这里对蜂鸣器和传感器分别装在一个文件中,创建完记得在三色箱子进行拓充和魔法棒的C/C++进行补充;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

buzzer.h

#ifndef __BUZZER_H__
#define __BUZZER_H__void Buzzer_Init();
void Buzzer_ON();
void Buzzer_OFF();
void Buzzer_Turn();#endif

buzzer.c

#include "stm32f10x.h"                  // Device header//Buzzer的初始化
void Buzzer_Init()
{//设置APB2外设时钟开关RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);//选择结构体成员GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//初始化结构体GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化为低电平,改为高电平GPIO_SetBits(GPIOB, GPIO_Pin_12);}//Buzzer打开
void Buzzer_ON()
{GPIO_ResetBits(GPIOB, GPIO_Pin_12);
}
//Buzzer关闭
void Buzzer_OFF()
{GPIO_SetBits(GPIOB, GPIO_Pin_12);
}//Buzzer执行相反的操作
void Buzzer_Turn()
{if(GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_12)==0){GPIO_SetBits(GPIOB, GPIO_Pin_12);}else{GPIO_ResetBits(GPIOB, GPIO_Pin_12);}
}

LightSensor.c

#include "stm32f10x.h"                  // Device header//传感器的初始化
void LightSensor_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;//上拉输入,默认高电平GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);
}//获取传感器的信号
uint8_t LightSensor_Get(void)
{return GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_13);//灯光较亮时,传感器的指示灯亮,输入低电平//灯光较暗时,传感器指示灯不亮,输入高电平
}

LightSensor.h

#ifndef __LIGHTSENSOR_H__
#define __LIGHTSENSOR_H__void LightSensor_Init(void);
uint8_t LightSensor_Get(void);//uint8_t表示unsigned char#endif

mian.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "LightSensor.h"int main()
{LightSensor_Init();Buzzer_Init();while(1){//外界较暗时,感应器输入高电平(1),蜂鸣器响起if(LightSensor_Get()){Buzzer_ON();}//外界较亮时,感应器输入低电平(0),蜂鸣器不响else{Buzzer_OFF();}}
}

相关文章:

STM32--GPIO

文章目录 GPIO简介GPIO的基本结构GPIO位结构GPIO模式LED和蜂鸣器LED闪烁工程及程序原码代码: 蜂鸣器工程和程序原码代码 传感器光敏传感器控制蜂鸣器工程代码 GPIO简介 GPIO(General Purpose Input Output)是通用输入/输出口的简称。它是一种…...

剑指 Offer ! 61. 扑克牌中的顺子

参考资料:力扣K神的讲解 剑指 Offer 61. 扑克牌中的顺子 简单 351 相关企业 从若干副扑克牌中随机抽 5 张牌,判断是不是一个顺子,即这5张牌是不是连续的。2~10为数字本身,A为1,J为11,Q为12&…...

《玩转Python数据分析专栏》大纲

欢迎来到《玩转Python数据分析分类专栏》!在这个专栏中,我们将带您深入探索数据分析的世界,以Python为工具,解析各个领域的实际应用场景。通过100篇教程,我们将逐步引领您从入门级到高级,从基础知识到实战技巧,助您成为一名优秀的数据分析师。 专栏目标 本专栏旨在帮助…...

Zabbix自动注册服务器及部署代理服务器

文章目录 一.zabbix自动注册1.什么是自动注册2.环境准备3.zabbix客户端配置4.在 Web 页面配置自动注册5.验证自动注册 二.部署 zabbix 代理服务器1.分布式监控的作用:2.环境部署3.代理服务器配置4.客户端配置5.web页面配置5.1 删除原来配置5.2 添加代理5.3 创建主机…...

SpringBoot下使用自定义监听事件

事件机制是Spring的一个功能,目前我们使用了SpringBoot框架,所以记录下事件机制在SpringBoot框架下的使用,同时实现异步处理。事件机制其实就是使用了观察者模式(发布-订阅模式)。 Spring的事件机制经过如下流程: 1、自定义事件…...

并发编程面试题1

并发编程面试题1 一、原子性高频问题: 1.1 Java中如何实现线程安全? 多线程操作共享数据出现的问题。 锁: 悲观锁:synchronized,lock乐观锁:CAS 可以根据业务情况,选择ThreadLocal,让每个…...

【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【Oracle 数据库 SQL 语句 】积累1

Oracle 数据库 SQL 语句 1、分组之后再合计2、显示不为空的值 1、分组之后再合计 关键字: grouping sets ((分组字段1,分组字段2),()) select sylbdm ,count(sylbmc) a…...

Django中级指南:理解并实现Django的模型和数据库迁移

Django 是一个极其强大的 Python Web 框架,它提供了许多工具和特性,能够帮助我们更快速、更便捷地构建 Web 应用。在本文中,我们将会关注 Django 中的模型(Models)和数据库迁移(Database Migrations&#x…...

Chatgpt API调用报错:openai.error.RateLimitError

Chatgpt API 调用报错: openai.error.RateLimitError: You exceeded your current quota, please check your plan and billing details. 调用OpenAI API接口 import openai import osopenai.api_key os.getenv("OPENAI_API_KEY")result openai.Chat…...

一键获取数百张免费商用人脸!AI人脸生成器来袭

随着科技的发展,人工智能正在渗透到生活的各个角落,设计行业也不例外。在网页、APP、PPT 等界面设计中,设计师经常需要插入真实的人脸素材,以增强作品的真实感和场景化。但是获取素材既不容易,质量和价格也难免成为设计…...

跳跃游戏 II——力扣45

文章目录 题目描述解法一 贪心题目描述 解法一 贪心 int jump(vector<int>& nums){in...

Stable Diffusion - 常用的负向提示 Embeddings 解析与 坐姿 (Sitting) 提示词

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132145248 负向 Embeddings 是用于提高 StableDiffusion 生成图像质量的技术&#xff0c;可以避免生成一些不符合预期的图像特征&#xff0c;比如…...

工厂方法模式(一):C#实现指南

工厂方法模式是一种创建型设计模式&#xff0c;用于处理对象的创建问题。通过使用工厂方法模式&#xff0c;我们可以将对象的创建过程与使用过程分离&#xff0c;从而增加代码的灵活性和可维护性。 工厂方法模式的定义 工厂方法模式定义了一个创建对象的接口&#xff0c;但由子…...

Spring接口InitializingBean的作用和使用介绍

在Spring框架中&#xff0c;InitializingBean接口是一个回调接口&#xff0c;用于在Spring容器实例化Bean并设置Bean的属性之后&#xff0c;执行一些自定义的初始化逻辑。实现InitializingBean接口的Bean可以在初始化阶段进行一些必要的操作&#xff0c;比如数据的初始化、资源…...

Excel---成绩相同者,名次并列排列,三步搞定

需求&#xff1a;一张成绩表&#xff0c;共341行(340条数据&#xff0c;第一条为标题)&#xff0c;根据成绩进行排序&#xff0c;成绩相同进行名次并列 一、选择生成结果的位置&#xff0c;我这里点击了一下E2单元格 二、公式—>插入–>rank函数 数值&#xff1a;D2 表示…...

Elasticsearch6.x和7.x的区别

Elasticsearch6.x和7.x的区别 1、查找方面的区别 在增删改方面&#xff0c;6.x和7.x是一样的&#xff0c;在查找方面&#xff08;分为普通查找和有高亮的查找&#xff09;&#xff0c;6.x和7.x有区别。 在7.x的es中&#xff1a; org.springframework.data.elasticsearch.cor…...

基于STM32设计的口罩识别和无线测温系统

一、设计需求 基于STM32设计的口罩识别和无线测温系统 1.1 项目背景 随着深度学习和计算机视觉的快读发展,与此有关的技术设备已经被大幅度的使用,并且不仅仅在这两个方面,更在许许多多的领域都有使用。众所周知,图像理解之中的最重要的一个步骤即为目标检测,和为目标检测…...

第五十天

●软件测试的目的 软件测试的目的是寻找错误&#xff0c;并且尽可能找出更多的错误。 测试是程序的执行过程&#xff0c;目的在于发现错误 一个好的测试用例在于能够发现至今为止未发现的错误 一个成功的测试是发现了至今未发现的错误的测试 ●软件测试工作流程&#xff1…...

vue-pc端elementui-统一修改问题-Dialog 对话框点击空白关闭问题-element-所有组件层级问题

前言 实际开发我们经常发现dialog弹出框默认点击遮罩层空白地方就会关闭-有属性可以关闭 但是经常会图方便-或者已经写完了&#xff0c;不想一个个写&#xff0c;可以在main.js进行统一关闭 当我们在页面进行复杂设计和层级关闭改变&#xff0c;会发现右上角的退出登录弹出款…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...