NLP 时事和见解【2023】
一、说明
AI的新闻当然不是即时的,但作为趋势和苗头,我们不得不做出自己的决定。比如,一些软件的支持是否持续,哪些现成的软件将不再使用,等等。

图片来自中途
以下是NLPlanet为您选择的有关NLP和AI的每周文章,指南和新闻!
二、😎 来自网络的新闻
- Stack Overflow宣布OverflowAI。Stack Overflow正在通过OverflowAI将生成AI集成到他们的平台中。这包括使用矢量数据库的语义搜索和个性化结果。他们还增强了跨不同平台的搜索功能,并为Stack Overflow for Teams引入了企业知识摄取功能。
- 稳定性AI宣布稳定扩散XL 1.0。Stability AI 发布了 SDXL 1.0,这是一个开放访问图像模型,具有惊人的 6 亿个参数模型集合管道。此版本在颜色、对比度、照明和阴影方面有重大改进。
- 介绍Bittensor语言模型 — 适用于移动和边缘设备的最先进的3B参数模型。BTLM 是一种具有 3 亿个参数的语言模型,可在 RAM 有限的移动和边缘设备上高效运行。凭借更高的准确性和较大的上下文窗口,它在基准测试中优于类似大小的模型。BTLM 在准确性上与 7B 模型保持一致,但在内存占用和推理成本方面超过了它们。其目的是在边缘设备上启用AI应用程序,从而减少对集中式云基础架构的需求。
- 认识FreeWilly,我们庞大而强大的教学微调模型。Stability AI和CarperAI实验室合作发布了FreeWilly,这是一个使用监督微调(SFT)技术微调的LLaMA 2模型。FreeWilly2在某些任务中的表现与GPT-3.5相当,其功能已得到Stability AI研究人员和Hugging Face的验证。这两种型号均在非商业许可下公开提供。
- OpenAI在“低准确率”上破坏了AI编写的文本检测器。OpenAI决定停用其AI分类器,因为它在检测AI生成的文本方面的准确率较低。大型语言模型的快速发展使得有效识别特征或模式变得具有挑战性。
- Microsoft的Bing Chat在Chrome和Safari上针对“选定用户”进行测试。Microsoft已经确认,必应聊天将很快在Google Chrome和Safari等浏览器上使用。
- 前沿模型论坛。Anthropic、Google、Microsoft和OpenAI联手创建了前沿模型论坛,这是一个致力于安全和负责任地开发前沿AI模型的平台。该论坛旨在推进人工智能安全研究,建立安全最佳实践,分享知识,并利用人工智能应对社会挑战。
三、📚 来自网络的指南
- 使用 Gradio 构建生成式 AI 应用程序。Hugging Face和 DeepLearning.ai 推出了一个新的短期课程,使用Gradio构建生成AI应用程序。该课程侧重于使用开源语言模型创建用户友好的应用程序,项目范围从文本摘要到图像分析和图像生成。
- 构建一个 AI 图表生成器,只需 50 行即可适应任何数据集类型。开发人员可以使用 GPT-3.5 或 GPT-4 和 Langchain 轻松创建 AI 图表生成器,只需 50 行代码。
- 自动化网络研究。本文探讨了网络研究代理的发展。该方法涉及使用LLM生成搜索查询,执行搜索,抓取页面,索引文档以及为每个查询查找最相关的结果。
- 使用 Whisper 和 GPT-4 创建自动会议记录生成器。本指南探讨了会议记录生成工具的开发,该工具利用 Whisper 和 GPT-4 来有效地总结讨论、提取重要细节和分析情绪。
四、🔬 有趣的论文和资料库
- karpathy/llama2.c:在一个纯C文件中的推理骆驼2。Andrew Karpathy在纯C中发布了LLaMA 2推理的教育实现。该项目允许您在 PyTorch 中训练 LLaMA 2 LLM 架构,然后将权重加载到单个 C 文件中以进行高效推理。
- FLASK:基于对齐技能集的细粒度语言模型评估。FLASK 是专门为 LLM 绩效评估设计的评估协议。它将评估分解为 12 种不同的技能集,允许根据特定技能(如逻辑稳健性、事实性和理解力)对模型的性能进行详细分析。
- 对对齐语言模型的通用和可转移攻击。最近的一项研究探讨了对开源和闭源语言模型的对抗性攻击的自动构建,使它们容易受到有害命令的影响。这些攻击转移到广泛使用的聊天机器人,引发了人们对有效修补这些漏洞的担忧。深度学习模型对对抗性攻击的固有敏感性仍然存在不确定性,类似于计算机视觉面临的挑战。
- WebArena:用于构建自治代理的逼真Web环境。WebArena 是一个逼真的 Web 环境,允许自主代理在与电子商务、社交论坛、软件开发和内容管理相关的任务中发展他们的技能。它提供了评估任务完成情况的基准,并强调了改进代理的必要性,因为即使是像 GPT-4 这样的高级模型的成功率也只有 10.59%。
- LLaVA:大型语言和视觉助手。LLaVA是一种大型多模态模型,结合了视觉和语言处理,以提高视觉和语言理解。它实现了令人印象深刻的聊天功能,并为科学 QA 设置了新的最先进的准确性。初步实验表明,与 GPT-4 相比,它在合成多模态指令遵循数据集上具有更高的性能。
- FABRIC:通过迭代反馈个性化扩散模型。研究人员开发了一种称为FABRIC的免训练方法,将用户反馈整合到基于扩散的文本到图像模型中。通过利用自我注意,该模型可以根据迭代用户输入增强其生成过程,从而提高输出质量和更好的用户体验。
- 3D-LLM:将3D世界注入大型语言模型。一项新的研究引入了3D-LLM,它通过结合3D点云及其特征来增强具有3D理解的语言模型。通过使用 3D 特征提取器和现有的 2D VLM,3D-LLM 在字幕、问答和导航等任务上实现了令人印象深刻的性能,超过了现有的 LLM 和 VLM。
- 具有规划、长上下文理解和程序综合的真实网络代理。WebAgent是一个LLM驱动的代理,它使用Flan-U-PaLM和HTML-T5来改善真实网站上的自主Web导航和任务完成。通过分解指令、总结 HTML 文档和生成 Python 程序,与以前的模型相比,成功率提高了 50%。
- STEVE-1:Minecraft 中文本到行为的生成模型。Minecraft中的STEVE-1模型可以理解和响应文本指令,这要归功于其训练过程,包括预先训练的模型和自我监督的行为克隆。它不仅在遵循各种说明方面设定了新的基准,而且还以较低的培训成本实现了卓越的性能,使研究人员可以在预算内使用它。
感谢您的阅读!如果你想了解更多关于NLP的信息,记得关注NLPlanet。您可以在LinkedIn、推特、媒体和我们的 Discord 服务器上找到我们!
相关文章:
NLP 时事和见解【2023】
一、说明 AI的新闻当然不是即时的,但作为趋势和苗头,我们不得不做出自己的决定。比如,一些软件的支持是否持续,哪些现成的软件将不再使用,等等。 图片来自中途 以下是NLPlanet为您选择的有关NLP和AI的每周文章&#x…...
Windows 环境下 Python3 离线安装 cryptography 失败
发布Flask Web项目时,报错缺少Cryptography,于是尝试重新安装该库,但本机没有网络,只支持手动离线安装,尝试了pip、setup.py两种方式安装,结果都报错。。最后使用将安装包拷贝至本机(在其他电脑上安装的sit…...
年轻代频繁GC ParNew导致http变慢
背景介绍 某日下午大约四点多,接到合作方消息,线上环境,我这边维护的某http服务突然大量超时(对方超时时间设置为300ms),我迅速到鹰眼平台开启采样,发现该服务平均QPS到了120左右,平…...
在.NET 6.0中自定义接口路由
在本文中,我们将讨论ASP.NET Core中的新路由。我们将了解什么是接口(endpoints)路由,它是如何工作的,它在哪里使用,以及如何创建自己的路由。 本文主题: 探索接口路由创建自定义接口创建更复杂的接口 名词定义&#…...
Kotlin读写分离CopyOnWriteArrayList
Kotlin读写分离CopyOnWriteArrayList 基于读写分离思想Copy-On-Write(COW)设计的线程安全ArrayList变体,读读共享、写写互斥、读写互斥、写读互斥。读时直接读,不用加锁同步,线程安全。写/删/修改数据时复制一个副本,在新的List副…...
centos自动同步北京时间
1、安装ntpdate服务 yum -y install ntpdate 2、加入自动任务计划 查找ntpdate的路径: which ntpdate 复制这个路径。 编辑自动任务计划并加入ntpdate: crontab -e # 每小时第30分钟同步AD域控时间 30 * * * * /usr/sbin/ntpdate -u 192.168.2.8 > …...
element-ui表格跨页多选实现
前言 在我们日常项目开发中,经常会有表格跨页多选的需求,接下来让我们用 el-table 示例一步步来实现这个需求。 动手开发 在线体验 https://codesandbox.io/s/priceless-mcclintock-4cp7x3?file/src/App.vue 常规版本 本部分只写了一些重点代码,心急的彦祖可以直接看 性…...
线性代数(三) 线性方程组向量空间
前言 如何利用行列式,矩阵求解线性方程组。 线性方程组的相关概念 用矩阵方程表示 齐次线性方程组:Ax0;非齐次线性方程组:Axb. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的…...
学习跨度级交互以提取方面情感三元组
方面情感三元组 方面情感三元组(Aspect Sentiment Triplet)是一种在情感分析中使用的结构,它包含三个部分:方面目标(Aspect Target)、情感(Sentiment)和对应的观点词(Op…...
那些年的Xposed开发经验记录
把之前写的Xposed相关文章合并到一块,方便查阅 目录 多进程App的Hook问题XposedHelper中的静态变量demo的AndroidManifest.xml的测试核心代码结论限制handleLoadPackage被单个进程多次执行的问题 多dex Hook问题为应用增加权限利用Xposed删除权限参考 Hook框架集锦…...
android studio内存分析之Memory profiler的使用
目录 Android Studio中内存分析工具Memory profiler的使用1. 打开Memory Profiler2. 工具使用3. 内存选项说明4. 内存性能分析器概览5. 内存计算方式6. 查看内存分配7. 捕获java/kotlin方式查看内存分配8. 堆转储文件导入和导出 内存性能分析器中的泄漏检测 Android Studio中内…...
Qt下载慢/无法下载解决方式
文章目录 一. Qt在线安装下载二. 安装方式 一. Qt在线安装下载 官网下载:https://www.qt.io/download清华源下载:https://mirrors.tuna.tsinghua.edu.cn/qt/official_releases/online_installers/ 二. 安装方式 进入下载好的目录 在目录栏输入CMD&…...
【UE4 RTS】04-Camera Pan
前言 本篇实现了CameraPawn的旋转功能。 效果 步骤 1. 打开项目设置,添加两个操作映射 2. 打开玩家控制器“RTS_PlayerController_BP”,新建一个浮点型变量,命名为“PanSpeed” 在事件图表中添加如下节点 此时运行游戏可以发现当鼠标移动…...
出现raise NotImplementedError报错
在学习《动手学深度学习》时,实现下面代码时,报出raise NotImplementedError错误。 import collections import torch from d2l import torch as d2l import math from torch import nnclass Seq2SeqEncoder(d2l.Encoder):def __init__(self,vocab_size,…...
第一百二十二天学习记录:C++提高:STL-vector容器(上)(黑马教学视频)
vector基本概念 功能: vector数据结构和数组非常相似,也称为单端数组 vector与普通数组区别: 不同之处在于数组是静态空间,而vector可以动态扩展 动态扩展: 并不是在原空间之后续接新的空间,而是找更大的内…...
《Linux从练气到飞升》No.11 初识操作系统
🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…...
什么是 XSS 攻击?
概念 XSS 攻击指的是跨站脚本攻击,是一种代码注入攻击。攻击者通过在网站注入恶意脚本,使之在用户的浏览器上运行,从而盗取用户的信息如 cookie 等。 XSS 的本质是因为网站没有对恶意代码进行过滤,与正常的代码混合在一起了&…...
基于Spring Boot的招聘网站的设计与实现(Java+spring boot+MySQL)
获取源码或者论文请私信博主 演示视频: 基于Spring Boot的招聘网站的设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java springboot框…...
中级课程——CSRF
文章目录 案例原理挖掘 案例 原理 挖掘 挖掘详情 首先就是对目标敏感部位进行抓包分析,比如修改信息、转账、添加信息等等。通常一个数据包HTTP请求头里边都会有一个Referer,这个需要特别去验证。比如放到Burpsuit Repeater里边去测试:去掉…...
面试热题(岛屿数量)
给你一个由 1(陆地)和 0(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此外,你可以假设该网格的四条边均…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
