【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)
ECANet(Efficient Channel Attention Network)是一种用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力。ECANet通过引入通道注意力机制,以及在卷积层中嵌入该机制,取得了优越的性能。本文将对ECANet的核心思想、结构以及优势进行详细讲解。
1. 核心思想
ECANet的核心思想是在卷积操作中引入通道注意力机制,以捕捉不同通道之间的关系,从而提升特征表示的能力。通道注意力机制的目标是自适应地调整通道特征的权重,使得网络可以更好地关注重要的特征,抑制不重要的特征。通过这种机制,ECANet能够在不增加过多参数和计算成本的情况下,有效地增强网络的表征能力。
2. 结构
ECANet的结构主要分为两个部分:通道注意力模块和嵌入式通道注意力模块。
通道注意力模块是ECANet的核心组成部分,它的目标是根据通道之间的关系,自适应地调整通道特征的权重。该模块的输入是一个特征图(Feature Map),通过全局平均池化得到每个通道的全局平均值,然后通过一组全连接层来生成通道注意力权重。这些权重被应用于输入特征图的每个通道,从而实现特征图中不同通道的加权组合。最后,通过一个缩放因子对调整后的特征进行归一化,以保持特征的范围。
嵌入式通道注意力模块是ECANet的扩展部分,它将通道注意力机制嵌入到卷积层中,从而在卷积操作中引入通道关系。这种嵌入式设计能够在卷积操作的同时,进行通道注意力的计算,减少了计算成本。具体而言,在卷积操作中,将输入特征图划分为多个子特征图,然后分别对每个子特征图进行卷积操作,并在卷积操作的过程中引入通道注意力。最后,将这些卷积得到的子特征图进行合并,得到最终的输出特征图。
实现机制:
-
通过全剧平均池化层,将每个通道大的二维特征(h*w)压缩为一个实数, 特征图维变化: (C, H, W) -> (C, 1, 1)
-
计算得到自适应的一维卷积核的kernel_size,计算公式如下:
其中
b = 1 γ = 2 C 为通道数 b = 1 \\ \gamma = 2\\ C为通道数 b=1γ=2C为通道数
- 将kernel_size = k的一维卷积核(一维same核)用于特征图,得到每个通道的权重向量, 维度变化(C, 1, 1) -> (C, 1, 1).
- 将归一化后的权重加权乘以输入特征图 (C, H, W) * (C, 1, 1) -> (C, H, W)
3. 优势
ECANet的设计在以下几个方面具有优势:
ECANet通过嵌入式通道注意力模块,在保持高效性的同时,引入了通道注意力机制。这使得网络能够在不增加过多计算成本的情况下,提升特征表示的能力。
通道注意力机制能够自适应地调整通道特征的权重,使得网络能够更好地关注重要的特征。这种机制有助于提升特征的判别能力,从而提升了网络的性能。
通道注意力机制有助于抑制不重要的特征,从而减少了过拟合的风险。网络更加关注重要的特征,有助于提高泛化能力。
4. 代码实现
class ECANet(nn.Module):def __init__(self, in_channels, gamma=2, b=1):super(ECANet, self).__init__()self.in_channels = in_channelsself.fgp = nn.AdaptiveAvgPool2d((1, 1))kernel_size = int(abs((math.log(self.in_channels, 2) + b) / gamma))kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1self.con1 = nn.Conv1d(1,1,kernel_size=kernel_size,padding=(kernel_size - 1) // 2,bias=False)self.act1 = nn.Sigmoid()def forward(self, x):output = self.fgp(x)output = output.squeeze(-1).transpose(-1, -2)output = self.con1(output).transpose(-1, -2).unsqueeze(-1)output = self.act1(output)output = torch.multiply(x, output)return output
总结
ECANet是一种高效的神经网络架构,通过引入通道注意力机制,能够有效地捕捉图像中的通道关系,提升特征表示的能力。它的结构包括通道注意力模块和嵌入式通道注意力模块,具有高效性、提升特征表示和减少过拟合等优势。通过这种设计,ECANet在图像处理任务中取得了优越的性能。
相关文章:

【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)
ECANet(Efficient Channel Attention Network)是一种用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力。ECANet通过引入通道注意力机制,以及在…...
python爬虫的简单实现
当涉及网络爬虫时,Python中最常用的库之一是requests。它能够发送HTTP请求并获取网页内容。下面是一个简单的示例,展示如何使用requests库来获取一个网页的内容: import requests 指定要爬取的网页的URL url ‘https://example.com’ 发…...
如何正确的向chatgpt提问?
有没有发现,在使用ChatGPT的时候,他回答的一些问题并不是我们想要的甚至有的时候出现牛头不对马嘴的情况。 这时候就会感慨一句,人工智能也不怎么样嘛! 但是,有没有想过,是自己问的问题太宽泛,没有问到点上…...

一键部署 Umami 统计个人网站访问数据
谈到网站统计,大家第一时间想到的肯定是 Google Analytics。然而,我们都知道 Google Analytics 会收集所有用户的信息,对数据没有任何控制和隐私保护。 Google Analytics 收集的指标实在是太多了,有很多都是不必要的,…...
java种的hutool库接口说明和整理
1. Hutool库基本介绍 1.1. 地址 官网地址:https://www.hutool.cn/ 1.2. 基本介绍 Hutool是一个小而全的Java工具类库,通过静态方法封装,降低相关API的学习成本,提高工作效率,使Java拥有函数式语言般的优雅…...

控制国外各类电液伺服阀放大器
控制通用型不带反馈信号输入的伺服阀放大器,对射流管式电液伺服阀、喷嘴挡板式电液伺服阀及国外各类电液伺服阀进行控制。 通过系统参数有10V和4~20mA输入指令信号选择; 供电电源: 24VDC(标准) 输出电流:最大可达10…...
【go语言基础】go中的方法
先思考一个问题,什么是方法,什么是函数? 方法是从属于某个结构体或者非结构体的。在func这个关键字和方法名中间加了一个特殊的接收器类型,这个接收器可以是结构体类型的或者是非结构体类型的。从属的结构体获取该方法。 函数则…...

Go 语言并发编程 及 进阶与依赖管理
1.0 从并发编程本质了解Go高性能的本质 1.1 Goroutine 协程可以理解为轻量级线程; Go更适合高并发场景原因之一:Go语言一次可以创建上万协成; “快速”:开多个协成 打印。 go func(): 在函数前加 go 代表 创建协程; time.Sleep():…...

绽放趋势:Python折线图数据可视化艺术
文章目录 一 json数据格式1.1 json数据格式认识1.2 Python数据和Json数据的相互转换 二 pyecharts模块2.1 pyecharts概述2.2 pyecharts模块安装 三 pyecharts快速入门3.1 基础折线图3.2 pyecharts配置选项3.2.1 全局配置选项 3.4 折线图相关配置3.4.1 .add_yaxis相关配置选项3.…...

BGP小综合
实验要求及拓扑 一、思路 1.使用OSPF使R2-R7之间可通。 2.各自宣告AS区域,两个区域两两之间建邻,AS2两个小区域之间建联邦(R2与R5、R4与R7)。 3.使R3、R6为路由反射器 RR反射器选取各小区域的路由器作为客户端 、非客户端 4.优…...

一起学数据结构(3)——万字解析:链表的概念及单链表的实现
上篇文章介绍了数据结构的一些基本概念,以及顺序表的概念和实现,本文来介绍链表的概念和单链表的实现,在此之前,首先来回顾以下顺序表的特点: 1.顺序表特点回顾: 1. 顺序表是一组地址连续的存储单元依次存…...

9.2.1Socket(UDP)
一.传输层: 1.UDP:无连接,不可靠,面向数据报,全双工. 2.TCP:有连接,可靠,面向字节流,全双工. 注意:这里的可不可靠是相对的,并且和安不安全无关. 二.UDP数据报套接字编程: 1.socket文件:表示网卡的这类文件. 2.DatagramPacket:表示一个UDP数据报. 三.代码实现: 1.回显服务…...

9.1网络通信基础
一.基础概念: 1)IP地址:描述网络上的一个设备所在的位置. 2)端口号(port):区分一个主机上不同的进程,和pid一样的作用,但两者不同. 3)协议:网络通信传输数据的含义,协议表示一种约定,这种约定可以是任意的.协议分层之后,上层不需要知道下层协议的细节,可以灵活地调整,替换某…...

idea添加翻译插件并配置有道翻译
1、安装Translation插件 2、 创建有道云应用 有道智云控制台 3、设置idea 4、效果(选中文本右键翻译,默认快捷键CtrlShiftY)...

激光切割机的操作中蛙跳技术是什么意思
其实,蛙跳技术就是指在激光切割机运行的过程中,机器换位置的方式。打个比方,你刚刚在这儿把孔1切好了,接下来就得跑到那儿把孔2切了。 在这个过程中,激光切割机就像是一只青蛙,要从一个位置跳到另一个位置。…...

Typescript+React入门
初识Typescript 出现背景 Typescript(以下简称TS)实际上就是JavaScriptType,用数据类型的方式来约束了JS的变量定义 在JS的基础上增加了类型支持 在JS中大多数错误都是因为数据类型造成的,所以TS为了规避这个问题加入了类型限制…...

竞赛项目 酒店评价的情感倾向分析
前言 🔥 优质竞赛项目系列,今天要分享的是 酒店评价的情感倾向分析 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/post…...

加载并绘制时间域内的心电图信号,并实施Q因子为1的陷波滤波器以去除50 Hz频率研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

瑞数信息《2023 API安全趋势报告》重磅发布: API攻击持续走高,Bots武器更聪明
如今API作为连接服务和传输数据的重要通道,已成为数字时代的新型基础设施,但随之而来的安全问题也日益凸显。为了让各个行业更好地应对API安全威胁挑战,瑞数信息作为国内首批具备“云原生API安全能力”认证的专业厂商,近年来持续输…...
HCIA静态路由与动态路由
目录 一、静态路由 定义: 适用环境 二、动态路由 定义: 特点: 动态路由协议: 三、缺点: 1)静态路由缺点: 2)动态路由的缺点: 四、静态路由与动态路由的区别 静态路由: 动态路由: 一、静态路…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...