zookeeper和kafka
目录
一、zookeeper理论
1.1、zookeeper定义
1.2、zookeeper工作机制
1.3、zookeeper特点
1.4、zookeeper的数据结构
1.5、zookeeper应用场景
1.6、zookeeper的选举机制
二、部署Zookeeper 集群
2.1、环境准备
2.2、安装 Zookeeper
2.3、修改配置文件
2.4、配置 Zookeeper 启动脚本
三、kafka概述
3.1、为什么要使用消息队列(MQ)
3.2、消息队列的两种模式
3.3、Kafka 定义
3.4、Kafka 简介
3.5、Kafka 的特性
3.5.1 高吞吐量、低延迟
3.5.2 可扩展性
3.5.3 持久性、可靠性
3.5.4 容错性
3.5.5 高并发
3.6、Kafka 系统架构
3.7、分区的原理
四、部署 kafka(所有zookeeper节点)
4.1、下载安装包
4.2 修改环境变量
4.3 配置kafka 启动脚本
5.Kafka 命令行操作
一、zookeeper理论
1.1、zookeeper定义
- Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。
1.2、zookeeper工作机制
- Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。也就是说 Zookeeper = 文件系统 + 通知机制。
1.3、zookeeper特点
- Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
- Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。
- 全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
- 更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。
- 数据更新原子性,一次数据更新要么成功,要么失败。
- 实时性,在一定时间范围内,Client能读到最新数据。
1.4、zookeeper的数据结构
- ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识。
1.5、zookeeper应用场景
- 统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。
- 统一配置管理
分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。
配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器
- 统一集群管理
分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。
- 服务器动态上下线
客户端能实时洞察到服务器上下线的变化。
- 软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。
1.6、zookeeper的选举机制
- 第一次启动时选举机制
- 服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
- 服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING
- 服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;
- 服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;
- 服务器5启动,同4一样当小弟。
- 非第一次启动时选举机制
- 当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:服务器初始化启动。服务器运行期间无法和Leader保持连接。
- 而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:
- 集群中本来就已经存在一个Leader。对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。
- 集群中确实不存在Leader。假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。
选举Leader规则:
- EPOCH大的直接胜出
- EPOCH相同,事务id大的胜出
- 事务id相同,服务器id大的胜出
SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加
二、部署Zookeeper 集群
节点 | 服务 |
---|---|
192.168.19.3 | zookeeper |
192.168.19.4 | zookeeper |
192.168.19.5 | zookeeper |
2.1、环境准备
安装前准备
//关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
setenforce 0//安装 JDK
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version//下载安装包
官方下载地址:https://archive.apache.org/dist/zookeeper/cd /opt
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz
2.2、安装 Zookeeper
安装 Zookeeper
cd /opt
tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7
2.3、修改配置文件
修改配置文件
cd /usr/local/zookeeper-3.5.7/conf/
cp zoo_sample.cfg zoo.cfgvim zoo.cfg
tickTime=2000 #通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
initLimit=10 #Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
syncLimit=5 #Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认为Follwer死掉,并从服务器列表中删除Follwer
dataDir=/usr/local/zookeeper-3.5.7/data ●修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper-3.5.7/logs ●添加,指定存放日志的目录,目录需要单独创建
clientPort=2181 #客户端连接端口
#添加集群信息
server.1=192.168.19.3:3188:3288
server.2=192.168.19.4:3188:3288
server.3=192.168.19.5:3188:3288-------------------------------------------------------------------------------------
server.A=B:C:D
●A是一个数字,表示这个是第几号服务器。集群模式下需要在zoo.cfg中dataDir指定的目录下创建一个文件myid,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
●B是这个服务器的地址。
●C是这个服务器Follower与集群中的Leader服务器交换信息的端口。
●D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
/拷贝配置好的 Zookeeper 配置文件到其他机器上
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.19.4:/usr/local/zookeeper-3.5.7/conf/
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.19.5:/usr/local/zookeeper-3.5.7/conf/
//在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.5.7/data
mkdir /usr/local/zookeeper-3.5.7/logs
在每个节点的dataDir指定的目录下创建一个 myid 的文件
echo 1 > /usr/local/zookeeper-3.5.7/data/myid
echo 2 > /usr/local/zookeeper-3.5.7/data/myid
echo 3 > /usr/local/zookeeper-3.5.7/data/myid
2.4、配置 Zookeeper 启动脚本
配置 Zookeeper 启动脚本
vim /etc/init.d/zookeeper
#!/bin/bash
#chkconfig:2345 20 90
#description:Zookeeper Service Control Script
ZK_HOME='/usr/local/zookeeper-3.5.7'
case $1 in
start)echo "---------- zookeeper 启动 ------------"$ZK_HOME/bin/zkServer.sh start
;;
stop)echo "---------- zookeeper 停止 ------------"$ZK_HOME/bin/zkServer.sh stop
;;
restart)echo "---------- zookeeper 重启 ------------"$ZK_HOME/bin/zkServer.sh restart
;;
status)echo "---------- zookeeper 状态 ------------"$ZK_HOME/bin/zkServer.sh status
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac
// 设置开机自启
chmod +x /etc/init.d/zookeeper
chkconfig --add zookeeper//分别启动 Zookeeper
service zookeeper start//查看当前状态
service zookeeper status
三、kafka概述
3.1、为什么要使用消息队列(MQ)
- 主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。
- 我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。
使用消息队列的好处
- 解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
- 可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
- 缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
- 灵活性 & 峰值处理能力
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
- 异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
3.2、消息队列的两种模式
- 点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
- 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。
发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。
3.3、Kafka 定义
- Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。
3.4、Kafka 简介
- Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。
3.5、Kafka 的特性
3.5.1 高吞吐量、低延迟
Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。
3.5.2 可扩展性
kafka 集群支持热扩展
3.5.3 持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
3.5.4 容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)
3.5.5 高并发
支持数千个客户端同时读写
3.6、Kafka 系统架构
- Broker
一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。
- Topic
可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储
- Partition
为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。
每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。
Partation 数据路由规则:
- 指定了 patition,则直接使用;
- 未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
- patition 和 key 都未指定,使用轮询选出一个 patition。
- 每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
- 每个 partition 中的数据使用多个 segment 文件存储。
- 如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。
●broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
●如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
●如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。
- Replica
副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。
- Leader
每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。
- Follower
Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。
- 生产者
生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。
- Consumer
消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。
- Consumer Group(CG)
消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。
- offset 偏移量
可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。
- Zookeeper
Kafka 通过 Zookeeper 来存储集群的 meta 信息。
由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。
也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。
3.7、分区的原理
- 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
- 可以提高并发,因为可以以Partition为单位读写了。
四、部署 kafka(所有zookeeper节点)
4.1、下载安装包
下载安装包
官方下载地址:http://kafka.apache.org/downloads.htmlcd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz
安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}vim server.properties
broker.id=0 ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.19.3:9092 ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3 #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8 #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400 #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400 #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600 #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1 #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1 #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168 #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824 #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.19.3:2181,192.168.19.4:2181,192.168.19.5:2181 ●123行,配置连接Zookeeper集群地址
4.2 修改环境变量
/修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/binsource /etc/profile
4.3 配置kafka 启动脚本
配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)echo "---------- Kafka 启动 ------------"${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)echo "---------- Kafka 停止 ------------"${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)$0 stop$0 start
;;
status)echo "---------- Kafka 状态 ------------"count=$(ps -ef | grep kafka | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thenecho "kafka is not running"elseecho "kafka is running"fi
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac
设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka//分别启动 Kafka
service kafka start
5.Kafka 命令行操作
//创建topic
kafka-topics.sh --create --zookeeper 192.168.19.3:2181,192.168.19.4:2181,192.168.19.5:2181 --replication-factor 2 --partitions 3 --topic testkafka-topics.sh --create --zookeeper 192.168.19.3:2181,192.168.19.4:2181,192.168.19.5:2181 --replication-factor 2 --partitions 3 --topic test
-------------------------------------------------------------------------------------
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2
--partitions:定义分区数
--topic:定义 topic 名称
相关文章:

zookeeper和kafka
目录 一、zookeeper理论 1.1、zookeeper定义 1.2、zookeeper工作机制 1.3、zookeeper特点 1.4、zookeeper的数据结构 1.5、zookeeper应用场景 1.6、zookeeper的选举机制 二、部署Zookeeper 集群 2.1、环境准备 2.2、安装 Zookeeper 2.3、修改配置文件 2.4、配置…...
服务器无法加载海康sdk依赖的问题
首先遇到的jna.jar和examples.jar无法加载的问题,尝试了很多方法无效,以下方法实测有效 其次是动态链接库无法加载的问题,而且是播放库,我的方法比较简单,netsdk加载出来就行了,播放库用不到,删…...

brew+nginx配置静态文件服务器
背景 一下子闲下来了,了解的我的人都知道我闲不下来。于是,我在思考COS之后,决定自己整一个本地的OSS,实现静态文件的访问。那么,首屈一指的就是我很熟的nginx。也算是个小复习吧,复习一下nginx代理静态文…...

JavaFx异常: Not on FX application thread; currentThread = Timer-0
我的定时器任务中有两个控件: FXML TextArea Display; FXML Label Label_Display; 执行下方代码会抛出:Exception in thread "Timer-0" java.lang.IllegalStateException: Not on FX application thread; currentThread Timer-0 Timer_tas…...

【Django】无法从“django.utils.encoding”导入名称“force_text”
整晚处理 Django 的导入错误。 我将把它作为提醒,希望处于相同情况的人数会减少。 原因 某些软件包版本不支持Django 4 请看下表并决定Django和Python的版本 方案 如果出现难以响应,或者更改环境麻烦,请尝试以下操作 例如出现以下错误 …...

docker-compose redis 一直启动失败
环境: centos 8.x 背景 使用docker-compose 来启动redis docker-compose.yml 如下: version: 3.3 services:redis:image: redis:latestrestart: alwayscontainer_name: redisports:- 6379:6379volumes:- ./data:/redis/data- ./redis.conf:/redis/re…...

使用GUI Guider工具在MCU上开发嵌入式GUI应用 (1) - GUI Guider简介及安装
使用GUI Guider工具在MCU上开发嵌入式GUI应用 (1) - GUI Guider简介及安装 受限于每篇文章最多只能贴9张图的限制,这个教程被拆分成了多篇文章连载发布,完整目录结构如下图x所示。后续会发布完整教程的pdf文件,敬请期待。 图x 完整教程文档…...

解决:django设置DEBUG=false时出现的问题
首先,我用的是django4.2,python3.10版本 本来,如果在settings.py中使用 DEBUG True,那么什么问题也没有,当然,这属于调试模式。 DEBUG True TEMPLATE_DEBUG DEBUGSTATIC_URL /static/ STATICFILES_DI…...
2023-08-10力扣每日一题
链接: 1289. 下降路径最小和 II 题意: 每一行选择一个数字,相邻行选择不能是同一列,求选择的数字和最小是多少 解: 每一行选择最小的次小的,下一行能加最小的(列坐标不冲突)就加…...
C#与halcon联合 缩放移动自适应图像
读取图片 //获取文件路径下的图片public HObject GetImgFromPath(string imgPath){HObject L_Img;HOperatorSet.GenEmptyObj(out L_Img);//清空图片L_Img.Dispose();//释放HOperatorSet.ReadImage(out L_Img, imgPath);//读取图片存入到l_imgreturn L_Img;}拉伸显示 //图片拉…...

推荐 4 个 yyds 的 GitHub 项目
本期推荐开源项目目录: 1. 开源的 Markdown 编辑器 2. MetaGPT 3. SuperAGI 4. 一个舒适的笔记平台 01 开源的 Markdown 编辑器 Cherry 是腾讯开源的 Markdown 编辑器,基于 Javascript具有轻量简洁、易于扩展等特点, 它可以运行在浏览器或服…...
chrome插件开发实例05-页面间通信
目录 一、页面间通信的方式 方式1: 通过消息通信...

linux安装ftp
一、安装 参考博客 https://blog.csdn.net/dafeigecsdn/article/details/126518069 rpm -qa |grep vsftpd # 查看是否安装ftp yum -y install vsftpd # 安装vsftpuseradd -d /home/lanren312 lanren312 # 指定在/home目录下创建用户 passwd lanren312 # 给用户设置密码 # 输…...

前后端分离------后端创建笔记(上)
本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论,如有侵权请联系 源码:https://gitee.com/green_vegetables/x-admin-project.git 素材:https://pan.baidu.com/s/…...
Java不可变集合详解
什么是不可变集合 不可变集合,英文叫 immutable 顾名思义就是说集合是不可被修改的。集合的数据项是在创建的时候提供,并且在整个生命周期中都不可改变。 为什么要使用不可变集合 不可变对象有很多优点,包括: 当对象被不可信的…...
常见的JavaScript日常问题
在众多的编程语言中, JavaScript 给大部分的人的第一印象是人畜无害,看起来就简单的,对稍微有点儿开发经验的人来说,在网页中写个JavaScript功能也相当简单。但是当你真的得了解了JavaScript之后就会发现,它比我们想象…...
css modules的用法和在react项目中的应用
参考文章 CSS Modules 的用法 CSS Modules 的功能很单纯,只加入了局部作用域和模块依赖,可以保证某个组件的样式,不会影响到其他组件。 局部作用域 CSS的规则都是全局的,任何一个组件的样式规则,都对整个页面有效。…...

【LangChain概念】了解语言链️:第2部分
一、说明 在LangChain的帮助下创建LLM应用程序可以帮助我们轻松地链接所有内容。LangChain 是一个创新的框架,它正在彻底改变我们开发由语言模型驱动的应用程序的方式。通过结合先进的原则,LangChain正在重新定义通过传统API可以实现的极限。 在上一篇博…...
步入React前厅 - Css In React
目录 扩展学习资料 行内样式 引入样式表 CSS Module /src/components/common.module.css /src/components/listitem.module.css css管理进阶 Css管理工具 练习 扩展学习资料 资料名称 链接 css module CSS Modules 用法教程 - 阮一峰的网络日志 在React中使…...
OpenCV(三)——图像分割(二)
目录 4.边缘检测 4.1 图像梯度的概念 4.2 模板卷积和梯度图的概念 4.3 梯度算子...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...