数据分析 | 为什么Bagging算法的效果优于单个评估器
1. 回归问题如何降低方差
以随机森林为例,假设随机森林中含有n个弱评估器,由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的方差和偏差,因此假设任意弱评估器上输出结果为,方差均为
,则随机森林的输出结果为
,当各棵树相互独立时有如下关系:

由上述公式可知,随机森林在经过Bagging之后的方差一定小于单个评估器的方差,这也是随机森林的泛化能力总是强于单一决策树的根本原因。其中泛化误差为模型在测试集上的误差,有如下关系:
![]()
2. 分类问题如何降低方差
Bagging在执行分类任务时总是遵循少数服从多数的原则,同样可以通过回归器进行预测,只是在回归的基础上套上sigmoid函数,以0.5为阈值进行划分,即能将回归转化为分类。其中,sigmoid函数如下:

由于sigmoid函数是二阶可导函数,根据泰勒展开以及方差的运算性质有如下关系:

一阶导后平方的sigmoid函数值域为[0,0.0625],因此在分类问题上Bagging算法也是能降低方差的。
3. Bagging有效的条件
由于Bagging不能降低偏差,因此要求弱评估器的偏差较低,准确率至少在50%以上;由于方差降低的必要条件是各个弱评估器之间相互独立,因此要求弱评估器之间的相关性尽可能弱,可以通过随机采样来降低相关性。其中,ESL(p588)教材有如下公式。由此可知弱评估器的相关性越强,随机森林输出结果的方差就越大。

相关文章:
数据分析 | 为什么Bagging算法的效果优于单个评估器
1. 回归问题如何降低方差 以随机森林为例,假设随机森林中含有n个弱评估器,由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的方差和偏差,因此假设任意弱评估器上输出结果为,方差均为,则随机森林的输出…...
mysql架构介绍
1.整体架构图 我们发现整体的体系是由连接层、服务层、引擎层和物理文件存储层组成。 1.连接层 连接层是处理客户端和服务端之间的通信的,比如一些连接处理、授权验证等等。 2.服务层 服务层主要完成核心的功能,如SQL接口,就是用来接收…...
EIK+Filebeat+Kafka
目录 一、Kafka 概述 1)为什么需要消息队列(MQ) 2)使用消息队列的好处 (1)解耦 (2)可恢复性 (3)缓冲 (4)灵活性 & 峰值处理…...
python安装xgboost报错
ERROR: Could not find a version that satisfies the requirement xgboost (from versions: none) ERROR: No matching distribution found for xgboost 解决办法: 换成国内的pip源 pip install xgboost -i http://pypi.doubanio.com/simple/ --trusted-host py …...
语音芯片的型号有哪些?为什么强烈推荐使用flash型可擦写的
一、语音芯片的简介 语音芯片的型号有哪些?为什么强烈推荐使用flash型可擦写的芯片。这里我们简单描述一下如下常见类容: 1、他们都有什么特点?以及发展的历程简介 2、常见的语音芯片有哪些? 3、为什么推荐使用flash型可以重复…...
【OpenCV常用函数:轮廓检测+外接矩形检测】cv2.findContours()+cv2.boundingRect()
文章目录 1、cv2.findContours()2、cv2.boundingRect() 1、cv2.findContours() 对具有黑色背景的二值图像寻找白色区域的轮廓,因此一般都会先经过cvtColor()灰度化和threshold()二值化后的图像作为输入。 cv2.findContous(image, mode, method[, contours[, hiera…...
opencv,opengl,osg,vulkan,webgL,opencL,cuda
OpenCV OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 它轻量级而且高效——由一系列 C 函数和少量 C 类构成,同时提供了Python、Ruby、MATLAB等…...
golang拥有wireshark数据包解析能力
golang拥有wireshark数据包解析能力 1. 功能和实现 wireshark拥有世界上最全面的协议解析能力并且还在不断更新中,通过调研,没有办法找到与wireshark同水平的解析工具。 为了使得golang语言可以拥有wireshark一样强大的协议解析能力,库 gowir…...
Redis_分片集群
10. 分片集群 10.1简介 业务场景,需要存储50G的数据。对于内存和硬盘配置不足,选用两种方式 一种:纵向扩展:加内存,加硬盘,提高CPU。简单、直接。RDB存储效率要考虑。成本要考虑。二种:横向扩…...
测试提升方向:你选测试开发?还是性能测试?
如果想要在测试领域好好发展,提升自己的测试技术是必不可少的,但是,选对方向更为重要,功能测试、自动化测试、测试开发、性能测试、安全测试、测试管理,每个测试方向都不简单,但是,大环境就是&a…...
无涯教程-Perl - print函数
描述 此函数将LIST中的表达式的值打印到当前的默认输出文件句柄或FILEHANDLE指定的句柄中。 如果设置,则$\变量将添加到LIST的末尾。 如果LIST为空,则打印$_中的值。 print接受一个值列表,列表中的每个元素都将被解释为一个表达式。 语法 以下是此函数的简单语法- print…...
python搜索文件夹内类似的文件名
# codingutf8 __author__ Administrator import os """ #编写函数,计算字符串匹配的准确率 def Rate(origin,userInput): if not (isinstance(origin,str) and isinstance(userInput,str)): print(The two parameters must be strings…...
[保研/考研机试] KY3 约数的个数 清华大学复试上机题 C++实现
题目链接: KY3 约数的个数 https://www.nowcoder.com/share/jump/437195121691716950188 描述 输入n个整数,依次输出每个数的约数的个数 输入描述: 输入的第一行为N,即数组的个数(N<1000) 接下来的1行包括N个整数,其中每个…...
cmake扩展(2)——windows下动态设置输出文件(dll/exe)版本
准备 windows下设置文件的版本需要通过VERSIONINFO接口,详情参考VERSIONINFO resource。这里我们根据模板做了一定的修改。 1 VERSIONINFOFILEVERSION ${GIT_VERSION} //文件版本号,必填。以,分隔,输出以.分隔。这里是取CMakeLists里的GIT_…...
Python-OpenCV中的图像处理-颜色空间转换
Python-OpenCV中的图像处理-颜色空间转换 颜色空间转换获取HSV的值 颜色空间转换 在 OpenCV 中有超过 150 中进行颜色空间转换的方法。但是你以后就会 发现我们经常用到的也就两种: BGR G r a y 和 B G R Gray 和 BGR Gray和BGRHSV。 注意:在 OpenCV 的…...
yolov5目标检测多线程Qt界面
上一篇文章:yolov5目标检测多线程C部署 V1 基本功能实现 mainwindow.h #pragma once#include <iostream>#include <QMainWindow> #include <QFileDialog> #include <QThread>#include <opencv2/opencv.hpp>#include "yolov5.…...
[ubuntu]创建root权限的用户 该用户登录后自动切换为root用户
一、创建新用户 1、创建新用户 sudo useradd -r -m -s /bin/bash 用户名 # -r:建立系统账号 -m:自动建立用户的登入目录 -s:指定用户登入后所使用的shell2、手动为用户设置密码 passwd 用户名 二、为用户增加root权限 1、添加写权限 ch…...
大连交通大学813软件工程考研习题
1.什么是软件生存周期模型?有哪些主要模型? 生存周期模型:描述软件开发过程中各种活动如何执行的模型。对软件开发提供强有力的支持,为开发过程中的活动提供统一的政策保证,为参与开发的人员提供帮助和指导,是软件生存周期模型…...
分布式协议与算法——Paxos算法
目录 Paxos算法Basic Paxos算法三种角色如何达成共识(协商过程)小结: Multi-Paxos算法关于 Multi-Paxos 的思考领导者优化Basic PaxosChubby 的 Multi-Paxos 实现小结 参考 Paxos算法 Paxos论文 Paxos Made Simple 、author:Lesli…...
Spring中的Websocket身份验证和授权
目录 一、需要了解的事项二、依赖三、WebSocket 配置3.1 、简单的消息代理3.2 、Spring安全配置 一、需要了解的事项 http和WebSocket的安全链和安全配置是完全独立的。SpringAuthenticationProvider根本不参与 Websocket 身份验证。将要给出的示例中,身份验证不会…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
